Construction of Carbon Nitride Based Intramolecular D-A System for Effective Photocatalytic Reduction of CO2

被引:5
|
作者
Zhang, Xinyu [1 ,2 ]
Song, Xianghai [2 ]
Yan, Yongsheng [1 ,2 ]
Huo, Pengwei [2 ]
机构
[1] Beihua Univ, Coll Sci, Jilin 132013, Jilin, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Photocatalytic; Graphite carbon nitride; Donor-acceptor; 1,2-Dibromobenzene; Z-SCHEME SYSTEM; G-C3N4; NANOSHEETS; CHARGE-TRANSFER; EFFICIENT; HETEROJUNCTION; DEGRADATION; PERFORMANCE; DONOR; COPOLYMERS; OXIDATION;
D O I
10.1007/s10562-021-03644-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic technology provides a new strategy for mitigating energy crisis. The development of photocatalytic materials with high efficiency and stable visible light response has always been the direction of researchers in the field of photocatalysis. Graphite carbon nitride (g-CN) has attracted ever increasing attention in the field of photocatalysis due to its special characteristics (such as visible light response, high stability, and low cost). However, the low separation efficiency of photogenerated electrons and holes limits its catalytic activity. In this paper, a novel g-CN-based intramolecular donor-acceptor (D-A) system was prepared to promote the separation efficiency of light-induced charge carriers. The catalyst is prepared from g-CN and 1,2-dibromobenzene (Bz) through a simple calcination method. Characterization results confirmed that Bz was successfully introduced into the g-CN (g-CN-Bz (x)) framework. The formation of the D-A structure leads to the spatial separation of electrons and holes pairs, which significantly accelerates the separation efficiency of charge carriers. Moreover, the D-A structure plays an important role in adjusting the width of band gap, which can increase the light absorption capacity of the catalyst. The D-A system also leads to the formation of a built-in electric field, which significantly accelerates the migration speed of electrons. Among the prepared catalysts, g-CN-Bz (0.01) has the best photocatalytic CO2 reduction performance, and the evolution rate of CO is 5.2 times higher than that of CN (3.64 mu mol g(-1)). In addition, the reaction is carried out in water without any sacrificial agent, which makes it green and environmentally friendly. Graphic The charge carrier excitation-recombination process between donor and acceptor, and photocatalytic reduction of CO2 to CO over the CN based DA composites.
引用
收藏
页码:559 / 569
页数:11
相关论文
共 50 条
  • [1] Construction of Carbon Nitride Based Intramolecular D–A System for Effective Photocatalytic Reduction of CO2
    Xinyu Zhang
    Xianghai Song
    Yongsheng Yan
    Pengwei Huo
    Catalysis Letters, 2022, 152 : 559 - 569
  • [2] Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction
    Sadanandan, Aathira M.
    Yang, Jae-Hun
    Devtade, Vidyasagar
    Singh, Gurwinder
    Dharmarajan, Nithinraj Panangattu
    Fawaz, Mohammed
    Leec, Jang Mee
    Tavakkoli, Ehsan
    Jeon, Chung-Hwan
    Kumar, Prashant
    Vinu, Ajayan
    PROGRESS IN MATERIALS SCIENCE, 2024, 142
  • [3] Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction
    Li, Fang
    Yue, Xiaoyang
    Zhou, Haiping
    Fan, Jiajie
    Xiang, Quanjun
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (09) : 1608 - 1616
  • [4] Bridging engineering of polymeric carbon nitride for boosting photocatalytic CO2 reduction
    Ye, Qianjin
    Yang, Ran
    Huang, Longhui
    Li, Qin
    Zhang, Qiong
    Li, Di
    Tian, Dan
    Jiang, Deli
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 813 - 824
  • [5] Intramolecular D-A structure and n-π* transition co-promoted photodegradation activity of carbon nitride: Performance, mechanism and toxicity insight
    Shi, Jingmin
    Tai, Meng
    Hou, Jingyang
    Qiao, Yu
    Liu, Chunbo
    Zhou, Tianyu
    Wang, Liang
    Hu, Bo
    CHEMICAL ENGINEERING JOURNAL, 2023, 456
  • [6] Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review
    Huang, Xiaoyue
    Gu, Wenyi
    Ma, Yunfei
    Liu, Da
    Ding, Ningkai
    Zhou, Liang
    Lei, Juying
    Wang, Lingzhi
    Zhang, Jinlong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2020, 46 (12) : 5133 - 5164
  • [7] Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon nitride for excellent photocatalytic performance towards CO2 conversion
    Song, Xianghai
    Zhang, Xinyu
    Wang, Mei
    Li, Xin
    Zhu, Zhi
    Huo, Pengwei
    Yan, Yongsheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 594 : 550 - 560
  • [8] Polydopamine and Barbituric Acid Co-Modified Carbon Nitride Nanospheres for Highly Active and Selective Photocatalytic CO2 Reduction
    Li, Mei
    Zhang, Shengbo
    Liu, Xiao
    Han, Jinyu
    Zhu, Xinli
    Ge, Qingfeng
    Wang, Hua
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2019, (15) : 2058 - 2064
  • [9] Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride
    Li, Jiahui
    Li, Keyan
    Du, Jun
    Yang, Hong
    Song, Chunshan
    Guo, Xinwen
    JOURNAL OF CO2 UTILIZATION, 2022, 64
  • [10] Construction of 2D-coal-based graphene/2D-bismuth vanadate compound for effective photocatalytic CO2 reduction to CH3OH
    Zhang, Yating
    Zheng, Lisi
    Jia, Jia
    Li, Keke
    Zhang, Ting
    Yu, Haiquan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 639