RESIDENT SPACE OBJECT DETECTION USING ARCHIVAL THEMIS FLUXGATE MAGNETOMETER DATA

被引:0
|
作者
Brew, Julian [1 ]
Holzinger, Marcus J. [1 ]
机构
[1] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
来源
SPACEFLIGHT MECHANICS 2016, PTS I-IV | 2016年 / 158卷
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Although the detection of space objects is generally achieved using optical and radar measurements, these methods are limited in the capability of detecting small space objects at geosynchronous altitudes. This paper examines the use of magnetometers to detect space objects by introducing a matched filter scoring approach and evaluating it using archival fluxgate magnetometer data from the NASA THEMIS mission. Relevant data-set processing and reduction is discussed in detail. Supporting evidence for using magnetometers to detect resident space objects is presented. Plausible detections of charged space objects are reviewed.
引用
收藏
页码:4233 / 4251
页数:19
相关论文
共 50 条
  • [1] Probabilistic resident space object detection using archival THEMIS fluxgate magnetometer data
    Brew, Julian
    Holzinger, Marcus J.
    ADVANCES IN SPACE RESEARCH, 2018, 61 (09) : 2301 - 2319
  • [2] Detection and Characterisation of Conductive Objects Using Electromagnetic Induction and a Fluxgate Magnetometer
    Elson, Lucy
    Meraki, Adil
    Rushton, Lucas M.
    Pyragius, Tadas
    Jensen, Kasper
    SENSORS, 2022, 22 (16)
  • [3] Characterization of Resident Space object States Using Functional Data Analysis
    Kelecy, Thomas
    Gerber, Emily
    Akram, Sufyaan
    Paffett, John
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2022, 69 (02): : 627 - 649
  • [4] Characterization of Resident Space object States Using Functional Data Analysis
    Thomas Kelecy
    Emily Gerber
    Sufyaan Akram
    John Paffett
    The Journal of the Astronautical Sciences, 2022, 69 : 627 - 649
  • [5] Comparative Analysis of Resident Space Object (RSO) Detection Methods
    Suthakar, Vithurshan
    Sanvido, Aiden Alexander
    Qashoa, Randa
    Lee, Regina S. K.
    SENSORS, 2023, 23 (24)
  • [6] Astro-Det: Resident Space Object Detection for Space Situational Awareness
    Zhang, Yuhang
    Zhang, Rangya
    Jia, Qianlei
    Xiao, Jiaping
    Bai, Lu
    Feroskhan, Mir
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 228 - 233
  • [7] Deep Neural Network Closed-loop with Raw Data for Optical Resident Space Object Detection
    Zhao, He
    Sun, Rong-Yu
    Yu, Sheng-Xian
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (11)
  • [8] Deep Neural Network Closed-loop with Raw Data for Optical Resident Space Object Detection
    He Zhao
    RongYu Sun
    ShengXian Yu
    Research in Astronomy and Astrophysics, 2024, 24 (11) : 97 - 105
  • [9] Gaussian-Binary classification for resident space object maneuver detection
    Wang, Yiran
    Bai, Xiaoli
    Peng, Hao
    Chen, Genshe
    Shen, Dan
    Blasch, Erik
    Sheaff, Carolyn B.
    Acta Astronautica, 2021, 187 : 438 - 446
  • [10] Gaussian-Binary classification for resident space object maneuver detection
    Wang, Yiran
    Bai, Xiaoli
    Peng, Hao
    Chen, Genshe
    Shen, Dan
    Blasch, Erik
    Sheaff, Carolyn B.
    ACTA ASTRONAUTICA, 2021, 187 : 438 - 446