Inhibition of Autophagy via Lysosomal Impairment Enhances Cytotoxicity of Fullerenol under Starvation Condition

被引:9
作者
Yang, Liyun [1 ,2 ]
Hua, Siyu [1 ]
Fan, Junpeng [1 ,3 ]
Zhou, Zhiqiang [1 ,2 ]
Wang, Guanchao [1 ]
Jiang, Fenglei [1 ]
Xie, Zhixiong [1 ,3 ]
Xiao, Qi [2 ]
Liu, Yi [1 ,2 ]
机构
[1] Wuhan Univ, Wuhan, Peoples R China
[2] Nanning Normal Univ, Nanning, Peoples R China
[3] Hubei Prov Cooperat Innovat Ctr Ind Fermentat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
fullerenol; cytotoxicity; autophagy; lysosomal dysfunction; starvation; NANOPARTICLES; CELLS; ACCUMULATION; DERIVATIVES; MECHANISM; TOXICITY;
D O I
10.1021/acsabm.9b01001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Autophagy is well-known as a common cellular response to nanomaterials. As one of the most comprehensively studied carbon-based nanomaterials, fullerene and its derivatives have been reported to bring about autophagic features in various cell lines, but little is known about the role of fullerenol (C-60(OH)(44)) on the modulation of autophagy in human gastric tumor cell line SGC-7901. Fullerenol treatment led to the accumulation of autophagosomes, as evidenced by the increased fluorescent intensity of monodansylcadaverine (MDC) staining cells, an elevated level of LC3 protein, and the observation of auotphagosomes in cytoplasm. Subsequent results of the p62 level demonstrated that the accumulation of autophagosomes resulted from the blockade of autophagic flux rather than the activation of autophagy. Fullerenol disrupted autophagic flux by impairing lysosomal function, including lysosome membrane permeabilization (LMP), alkaline of lysosomes, and reduced activity of capthesin B. Interestingly, fullerenol treatment was noncytotoxic under a nutrient-rich condition. When serum was deprived, cytotoxicity occurred in a concentration- and time-dependent manner, along with massive vacuoles in cytoplasm, a large amount of ROS generation, and finally cell death, which can be ascribed to the disruption of essential autophagy in cells. Taken together, understanding this autophagy-lysosome pathway will shed light on the potential anticancer application of fullerenol.
引用
收藏
页码:977 / 985
页数:9
相关论文
共 35 条
[1]   Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Alhadlaq, Hisham A. ;
Alshamsan, Aws .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2017, 1861 (04) :802-813
[2]   Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2) [J].
Canesi, L. ;
Fabbri, R. ;
Gallo, G. ;
Vallotto, D. ;
Marcomini, A. ;
Pojana, G. .
AQUATIC TOXICOLOGY, 2010, 100 (02) :168-177
[3]   Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity [J].
Cohignac, Vanessa ;
Landry, Marion Julie ;
Boczkowski, Jorge ;
Lanone, Sophie .
NANOMATERIALS, 2014, 4 (03) :548-582
[4]   The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery [J].
Corbo, Claudia ;
Molinaro, Roberto ;
Parodi, Alessandro ;
Furman, Naama E. Toledano ;
Salvatore, Francesco ;
Tasciotti, Ennio .
NANOMEDICINE, 2016, 11 (01) :81-100
[5]  
Gibson H.W., 2010, J. Am. Chem. Soc, V132, P9929
[6]   Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression [J].
Hao, Tong ;
Zhou, Jin ;
Lu, Shuanghong ;
Yang, Boguang ;
Wang, Yan ;
Fang, Wancai ;
Jiang, Xiaoxia ;
Lin, Qiuxia ;
Li, Junjie ;
Wang, Changyong .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 :269-283
[7]   Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction [J].
Johnson-Lyles, Denise N. ;
Peifley, Kimberly ;
Lockett, Stephen ;
Neun, Barry W. ;
Hansen, Matthew ;
Clogston, Jeffrey ;
Stern, Stephan T. ;
McNeil, Scott E. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 248 (03) :249-258
[8]   Guidelines for the use and interpretation of assays for monitoring autophagy [J].
Klionsky, Daniel J. ;
Abdalla, Fabio C. ;
Abeliovich, Hagai ;
Abraham, Robert T. ;
Acevedo-Arozena, Abraham ;
Adeli, Khosrow ;
Agholme, Lotta ;
Agnello, Maria ;
Agostinis, Patrizia ;
Aguirre-Ghiso, Julio A. ;
Ahn, Hyung Jun ;
Ait-Mohamed, Ouardia ;
Ait-Si-Ali, Slimane ;
Akematsu, Takahiko ;
Akira, Shizuo ;
Al-Younes, Hesham M. ;
Al-Zeer, Munir A. ;
Albert, Matthew L. ;
Albin, Roger L. ;
Alegre-Abarrategui, Javier ;
Aleo, Maria Francesca ;
Alirezaei, Mehrdad ;
Almasan, Alexandru ;
Almonte-Becerril, Maylin ;
Amano, Atsuo ;
Amaravadi, Ravi ;
Amarnath, Shoba ;
Amer, Amal O. ;
Andrieu-Abadie, Nathalie ;
Anantharam, Vellareddy ;
Ann, David K. ;
Anoopkumar-Dukie, Shailendra ;
Aoki, Hiroshi ;
Apostolova, Nadezda ;
Arancia, Giuseppe ;
Aris, John P. ;
Asanuma, Katsuhiko ;
Asare, Nana Y. O. ;
Ashida, Hisashi ;
Askanas, Valerie ;
Askew, David S. ;
Auberger, Patrick ;
Baba, Misuzu ;
Backues, Steven K. ;
Baehrecke, Eric H. ;
Bahr, Ben A. ;
Bai, Xue-Yuan ;
Bailly, Yannick ;
Baiocchi, Robert ;
Baldini, Giulia .
AUTOPHAGY, 2012, 8 (04) :445-544
[9]   Facile and Scalable Synthesis of a Highly Hydroxylated Water-Soluble Fullerenol as a Single Nanoparticle [J].
Kokubo, Ken ;
Shirakawa, Shogo ;
Kobayashi, Naoki ;
Aoshima, Hisae ;
Oshima, Takumi .
NANO RESEARCH, 2011, 4 (02) :204-215
[10]   Fullerene derivatives: A review on perovskite solar cells [J].
Kumari, M. Aruna ;
Swetha, T. ;
Singh, Surya Prakash .
MATERIALS EXPRESS, 2018, 8 (05) :389-406