Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization

被引:112
作者
Inaniwa, Taku [1 ]
Kanematsu, Nobuyuki [2 ]
Noda, Koji [3 ]
Kamada, Tadashi [4 ]
机构
[1] Natl Inst Radiol Sci, Dept Accelerator & Med Phys, QST, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan
[2] Natl Inst Radiol Sci Hosp, Med Phys Sect, QST, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan
[3] Natl Inst Radiol Sci, QST, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan
[4] Natl Inst Radiol Sci Hosp, QST, Inage Ku, 4-9-1 Anagawa, Chiba 2638555, Japan
关键词
charged-particle therapy; LET optimization; treatment planning; CARBON-ION RADIOTHERAPY; MICRODOSIMETRIC KINETIC-MODEL; TUMOR-CONTROL PROBABILITY; BIOLOGICAL EFFECTIVENESS; RADIATION-THERAPY; HYPOXIC TUMORS; CELL-SURVIVAL; MONTE-CARLO; BEAM MODEL; SPECIES DEPENDENCE;
D O I
10.1088/1361-6560/aa68d7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The biological effect of charged-particle beams depends on both dose and particle spectrum. As one of the physical quantities describing the particle spectrum of charged-particle beams, we considered the linear energy transfer (LET) throughout this study. We investigated a new therapeutic technique using two or more ion species in one treatment session, which we call an intensity modulated composite particle therapy (IMPACT), for optimizing the physical dose and dose-averaged LET distributions in a patient as its proof of principle. Protons and helium, carbon, and oxygen ions were considered as ion species for IMPACT. For three cubic targets of 4 x 4 x 4, 8 x 8 x 8, and 12 x 12 x 12 cm(3), defined at the center of the water phantom of 20 x 20 x 20 cm(3), we made IMPACT plans of two composite fields with opposing and orthogonal geometries. The prescribed dose to the target was fixed at 1 Gy, while the prescribed LET to the target was varied from 1 keV mu m(-1) to 120 keV mu m(-1) to investigate the range of LET valid for prescription. The minimum and maximum prescribed LETs, (L-T_ (min), L-T_ (max)), by the opposing-field geometry, were (3 keV mu m(-1), 115 keV mu m(-1)), (2 keV mu m(-1), 84 keV mu m(-1)), and (2 keV mu m(-1), 66 keV mu m(-1)), while those by the orthogonal-field geometry were (8 keV mu m(-1), 98 keV mu m(-1)), (7 keV mu m(-1), 72 keV mu m(-1)), and (8 keV mu m(-1), 57 keV mu m(-1)) for the three targets, respectively. To show the proof of principle of IMPACT in a clinical situation, we made IMPACT plans for a prostate case. In accordance with the prescriptions, the LETs in prostate, planning target volume (PTV), and rectum could be adjusted at 80 keV mu m(-1), at 50 keV mu m(-1), and below 30 keV mu m(-1), respectively, while keeping the dose to the PTV at 2 Gy uniformly. IMPACT enables the optimization of the dose and the LET distributions in a patient, which will maximize the potential of charged-particle therapy by expanding the therapeutic window. Further studies and developments will enable this therapeutic technique to be used in clinical practice.
引用
收藏
页码:5180 / 5197
页数:18
相关论文
共 52 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Aso T, 2007, IEEE NUCL SCI CONF R, P2564
[3]   LET-painting increases tumour control probability in hypoxic tumours [J].
Bassler, Niels ;
Toftegaard, Jakob ;
Luehr, Armin ;
Sorensen, Brita Singers ;
Scifoni, Emanuele ;
Kraemer, Michael ;
Jaekel, Oliver ;
Mortensen, Lise Sakso ;
Overgaard, Jens ;
Petersen, Jorgen B. .
ACTA ONCOLOGICA, 2014, 53 (01) :25-32
[4]   Dose- and LET-painting with particle therapy [J].
Bassler, Niels ;
Jaekel, Oliver ;
Sondergaard, Christian Skou ;
Petersen, Jorgen B. .
ACTA ONCOLOGICA, 2010, 49 (07) :1170-1176
[5]   A Monte Carlo-based treatment-planning tool for ion beam therapy [J].
Boehlen, T. T. ;
Bauer, J. ;
Dosanjh, M. ;
Ferrari, A. ;
Haberer, T. ;
Parodi, K. ;
Patera, V. ;
Mairani, A. .
JOURNAL OF RADIATION RESEARCH, 2013, 54 :77-81
[6]   Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters [J].
Boehlen, T. T. ;
Brons, S. ;
Dosanjh, M. ;
Ferrari, A. ;
Fossati, P. ;
Haberer, T. ;
Patera, V. ;
Mairani, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (23) :7983-8004
[7]   Adaptation of the microdosimetric kinetic model to hypoxia [J].
Bopp, C. ;
Hirayama, R. ;
Inaniwa, T. ;
Kitagawa, A. ;
Matsufuji, N. ;
Noda, K. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (21) :7586-7599
[8]   QUANTIFICATION OF THE RELATIVE BIOLOGICAL EFFECTIVENESS FOR ION BEAM RADIOTHERAPY: DIRECT EXPERIMENTAL COMPARISON OF PROTON AND CARBON ION BEAMS AND A NOVEL APPROACH FOR TREATMENT PLANNING [J].
Elsaesser, Thilo ;
Weyrather, Wilma K. ;
Friedrich, Thomas ;
Durante, Marco ;
Iancu, Gheorghe ;
Kraemer, Michael ;
Kragl, Gabriele ;
Brons, Stephan ;
Winter, Marcus ;
Weber, Klaus-Josef ;
Scholz, Michael .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (04) :1177-1183
[9]  
Fager M, 2014, INT J RADIAT ONCOL, V65, P499
[10]   Particle species dependence of cell survival RBE: Evident and not negligible [J].
Friedrich, Thomas ;
Durante, Marco ;
Scholz, Michael .
ACTA ONCOLOGICA, 2013, 52 (03) :589-590