Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art

被引:559
作者
Wang, Shaobin [1 ]
Ang, H. M. [1 ]
Tade, Moses O. [1 ]
机构
[1] Curtin Univ Technol, Dept Chem Engn, Perth, WA 6845, Australia
关键词
photocatalytic oxidation; volatile organic compounds; indoor air; UV-vis light;
D O I
10.1016/j.envint.2007.02.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:694 / 705
页数:12
相关论文
共 51 条
[1]   Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide [J].
Alberici, RM ;
Jardim, WE .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1997, 14 (1-2) :55-68
[2]   The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J].
Anpo, M ;
Takeuchi, M .
JOURNAL OF CATALYSIS, 2003, 216 (1-2) :505-516
[3]   Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner [J].
Ao, CH ;
Lee, SC .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :103-109
[4]   Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO2 [J].
Ao, CH ;
Lee, SC ;
Zou, SC ;
Mak, CL .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 49 (03) :187-193
[5]   Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level [J].
Ao, CH ;
Lee, SC .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 161 (2-3) :131-140
[6]   Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level [J].
Ao, CH ;
Lee, SC .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2003, 44 (03) :191-205
[7]   Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2:: promotion versus inhibition effect of NO [J].
Ao, CH ;
Lee, SC ;
Mak, CL ;
Chan, LY .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2003, 42 (02) :119-129
[8]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[9]   Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst:: mechanistic aspects and FT-IR investigation [J].
Augugliaro, V ;
Coluccia, S ;
Loddo, V ;
Marchese, L ;
Martra, G ;
Palmisano, L ;
Schiavello, M .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1999, 20 (01) :15-27
[10]   Nitrogen-containing TiO2 photocatalysts -: Part 2.: Photocatalytic behavior under sunlight excitation [J].
Belver, C. ;
Bellod, R. ;
Stewart, S. J. ;
Requejo, F. G. ;
Fernandez-Garcia, M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 65 (3-4) :309-314