On energy wave equations with non-negative non-linear terms

被引:0
作者
Milla Miranda, M. [1 ]
Louredo, A. T. [1 ]
Clark, M. R. [2 ]
Clark, H. R. [3 ]
机构
[1] Univ Estadual Paraiba, Dm, PB, Brazil
[2] Univ Fed Piaui, Dm, PI, Brazil
[3] Univ Fed Fluminense, Ime, RJ, Brazil
关键词
Existence of solutions; Uniform stabilization; Non-linear system with non-negative terms; BOUNDARY STABILIZATION; UNIFORM STABILIZATION; DECAY-RATES; EXISTENCE;
D O I
10.1016/j.ijnonlinmec.2015.12.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper deals with the existence of at least one solution and the uniform stabilization of the energy of an initial-boundary value problem for a non-linear wave equation with non-linear boundary condition of the feedback type. The non-linearities in both waves and boundary equations behave as functions of the type vertical bar u vertical bar(rho)(R) for rho > 1. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:6 / 16
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1979, Topics in nonlinear analysis
[2]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[3]  
[Anonymous], 1993, DIFFER INTEGR EQUATI
[4]  
[Anonymous], 1996, Rev. Mat. Univ. Chile
[5]  
[Anonymous], 2003, EQUATIONS DERIVEES P
[6]  
[Anonymous], AN ACAD BRAS CIENC
[7]  
[Anonymous], 2009, VIBRATIONS CENGAGE L
[8]  
[Anonymous], 1961, Math. Z, DOI DOI 10.1007/BF01180181
[9]  
[Anonymous], 1970, NONLINEAR WAVE EQUAT
[10]   Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction [J].
Cavalcanti, Marcelo M. ;
Cavalcanti, Valeria N. Domingos ;
Lasiecka, Irena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) :407-459