Classification of Lie algebras of specific type in complexified Clifford algebras

被引:12
作者
Shirokov, D. S. [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
[2] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow, Russia
关键词
Clifford algebra; Lie algebra; quaternion type; Lie group; spin group; ELEMENTS;
D O I
10.1080/03081087.2017.1376612
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a full classification of Lie algebras of specific type in complexified Clifford algebras. These 16 Lie algebras are direct sums of subspaces of quaternion types. We obtain isomorphisms between these Lie algebras and classical matrix Lie algebras in the cases of arbitrary dimension and signature. We present 16 Lie groups: one Lie group for each Lie algebra associated with this Lie group. We study connection between these groups and spin groups.
引用
收藏
页码:1870 / 1887
页数:18
相关论文
共 17 条
[1]   On the transposition anti-involution in real Clifford algebras III: the automorphism group of the transposition scalar product on spinor spaces [J].
Ablamowicz, Rafal ;
Fauser, Bertfried .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (06) :621-644
[2]   On the transposition anti-involution in real Clifford algebras I: the transposition map [J].
Ablamowicz, Rafal ;
Fauser, Bertfried .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) :1331-1358
[3]   On the transposition anti-involution in real Clifford algebras II: stabilizer groups of primitive idempotents [J].
Ablamowicz, Rafal ;
Fauser, Bertfried .
LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (12) :1359-1381
[4]  
Benn I., 1987, An Introduction to Spinors and Geometry with Applications in Physics
[5]  
Lounesto P., 2001, CLIFFORD ALGEBRA SPI
[6]   Unitary spaces on Clifford algebras [J].
Marchuk, N. G. ;
Shirokov, D. S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) :237-254
[7]  
Porteous I, 1995, CLIFFORD ALGEBRAS CL
[9]  
Shirokov D., ARXIV11085447
[10]   Symplectic, Orthogonal and Linear Lie Groups in Clifford Algebra [J].
Shirokov, D. S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (03) :707-718