Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo

被引:59
作者
Ji, Bowen [1 ]
Ge, Chaofan [2 ,3 ,4 ]
Guo, Zhejun [1 ]
Wang, Longchun [1 ]
Wang, Minghao [5 ]
Xie, Zhaoqian [6 ]
Xu, Yeshou [7 ]
Li, Haibo [8 ,9 ]
Yang, Bin [1 ]
Wang, Xiaolin [1 ]
Li, Chengyu [2 ,3 ,4 ]
Liu, Jingquan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Micro Nano Elect, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Primate Neurobiol, Shanghai 200031, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[5] Hangzhou Dianzi Univ, Coll Elect & Informat, Hangzhou 310018, Peoples R China
[6] Dalian Univ Technol, Dept Engn Mech, Dalian 116024, Peoples R China
[7] Southeast Univ, Minist Educ, Key Lab C&PC Struct, Nanjing 210096, Peoples R China
[8] Tsinghua Univ, Dept Engn Mech, AML, Beijing 100084, Peoples R China
[9] Tsinghua Univ, Ctr Flexible Elect Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Stretchability; Opto-electric neural interface; Micro-LEDs; Low-noise; Electrocorticogram recordings; Optogenetics; POTENTIALS; SURFACE;
D O I
10.1016/j.bios.2020.112009
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Optogenetic-based neuromodulation tools is evolving for the basic neuroscience research in animals combining optical manipulation and electrophysiological recordings. However, current opto-electric integrated devices attaching on cerebral cortex for electrocorticogram (ECoG) still exist potential damage risks for both brain tissue and electrode, due to the mechanical mismatch and brain deformation. Here, we propose a stretchable optoelectric integrated neural interface by integrating serpentine-shaped electrodes and multisite micro-LEDs onto a hyperelastic substrate, as well as a serpentine-shaped metal shielding embedded in recording electrode for low-noise signal acquisition. The delicate structure design, ultrasoft encapsulation and independent fabrication followed by assembly are beneficial to the conformality, reliability and yield. In vitro accelerated deterioration and reciprocating tensile have demonstrated good performance and high stability. In vivo optogenetic activation of focal cortical areas of awaked mouse expressing Channelrhodopsin-2 is realized with simultaneous high-quality recording. We highlight the potential use of this multifunctional neural interface for neural applications.
引用
收藏
页数:11
相关论文
共 39 条
[21]   Inference of hand movements from local field potentials in monkey motor cortex [J].
Mehring, C ;
Rickert, J ;
Vaadia, E ;
de Oliveira, SC ;
Aertsen, A ;
Rotter, S .
NATURE NEUROSCIENCE, 2003, 6 (12) :1253-1254
[22]   Electronic dura mater for long-term multimodal neural interfaces [J].
Minev, Ivan R. ;
Musienko, Pavel ;
Hirsch, Arthur ;
Barraud, Quentin ;
Wenger, Nikolaus ;
Moraud, Eduardo Martin ;
Gandar, Jerome ;
Capogrosso, Marco ;
Milekovic, Tomislav ;
Asboth, Leonie ;
Torres, Rafael Fajardo ;
Vachicouras, Nicolas ;
Liu, Qihan ;
Pavlova, Natalia ;
Duis, Simone ;
Larmagnac, Alexandre ;
Voeroes, Janos ;
Micera, Silvestro ;
Suo, Zhigang ;
Courtine, Gregoire ;
Lacour, Stephanie P. .
SCIENCE, 2015, 347 (6218) :159-163
[23]   Ultrastretchable Kirigami Bioprobes [J].
Morikawa, Yusuke ;
Yamagiwa, Shota ;
Sawahata, Hirohito ;
Numano, Rika ;
Koida, Kowa ;
Ishida, Makoto ;
Kawano, Takeshi .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (03)
[24]   Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics [J].
Noh, Kyung Nim ;
Park, Sung Il ;
Qazi, Raza ;
Zou, Zhanan ;
Mickle, Aaron D. ;
Grajales-Reyes, Jose G. ;
Jang, Kyung-In ;
Gereau, Robert W. ;
Xiao, Jianliang ;
Rogers, John A. ;
Jeong, Jae-Woong .
SMALL, 2018, 14 (04)
[25]   Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics [J].
Park, Sung Il ;
Shin, Gunchul ;
McCall, Jordan G. ;
Al-Hasani, Ream ;
Norris, Aaron ;
Xia, Li ;
Brenner, Daniel S. ;
Noh, Kyung Nim ;
Bang, Sang Yun ;
Bhatti, Dionnet L. ;
Jang, Kyung-In ;
Kang, Seung-Kyun ;
Mickle, Aaron D. ;
Dussor, Gregory ;
Price, Theodore J. ;
Gereau, Robert W. ;
Bruchas, Michael R. ;
Rogers, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (50) :E8169-E8177
[26]   Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain [J].
Qiang, Yi ;
Artoni, Pietro ;
Seo, Kyung Jin ;
Culaclii, Stanislav ;
Hogan, Victoria ;
Zhao, Xuanyi ;
Zhong, Yiding ;
Han, Xun ;
Wang, Po-Min ;
Lo, Yi-Kai ;
Li, Yueming ;
Patel, Henil A. ;
Huang, Yifu ;
Sambangi, Abhijeet ;
Chu, Jung Soo, V ;
Liu, Wentai ;
Fagiolini, Michela ;
Fang, Hui .
SCIENCE ADVANCES, 2018, 4 (09)
[27]   Critical review of the responsive neurostimulator system for epilepsy [J].
Thomas, George P. ;
Jobst, Barbara C. .
MEDICAL DEVICES-EVIDENCE AND RESEARCH, 2015, 8 :405-411
[28]   Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring [J].
Tian, Limei ;
Zimmerman, Benjamin ;
Akhtar, Aadeel ;
Yu, Ki Jun ;
Moore, Matthew ;
Wu, Jian ;
Larsen, Ryan J. ;
Lee, Jung Woo ;
Li, Jinghua ;
Liu, Yuhao ;
Metzger, Brian ;
Qu, Subing ;
Guo, Xiaogang ;
Mathewson, Kyle E. ;
Fan, Jonathan A. ;
Cornman, Jesse ;
Fatina, Michael ;
Xie, Zhaoqian ;
Mao, Yinji ;
Zhang, Jue ;
Zhang, Yihui ;
Dolcos, Florin ;
Fabiani, Monica ;
Gratton, Gabriele ;
Bretl, Timothy ;
Hargrove, Levi J. ;
Braun, Paul, V ;
Huang, Yonggang ;
Rogers, John A. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (03) :194-+
[29]   High-Density Stretchable Electrode Grids for Chronic Neural Recording [J].
Tybrandt, Klas ;
Khodagholy, Dion ;
Dielacher, Bernd ;
Stauffer, Flurin ;
Renz, Aline F. ;
Buzsaki, Gyorgy ;
Voros, Janos .
ADVANCED MATERIALS, 2018, 30 (15)
[30]   Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology [J].
Uhhaas, Peter J. ;
Singer, Wolf .
NEURON, 2006, 52 (01) :155-168