Direct Band Gap Germanium Microdisks Obtained with Silicon Nitride Stressor Layers

被引:60
作者
El Kurdi, Moustafa [1 ]
Prost, Mathias [1 ]
Ghrib, Abdelhamid [1 ]
Sauvage, Sebastien [1 ]
Checoury, Xavier [1 ]
Beaudoin, Gregoire [2 ]
Sagnes, Isabelle [2 ]
Picardi, Gennaro [3 ]
Ossikovski, Razvigor [3 ]
Boucaud, Philippe [1 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, Inst Elect Fondamentale, CNRS, Batiment 220,Rue Andre Ampere, F-91405 Orsay, France
[2] CNRS, Lab Photon & Nanostruct, UPR20, Route Nozay, F-91460 Marcoussis, France
[3] Univ Paris Saclay, Ecole Polytech, CNRS, Lab Phys Interfaces & Couches Minces, F-91128 Palaiseau, France
来源
ACS PHOTONICS | 2016年 / 3卷 / 03期
关键词
silicon photonics; microdisk resonators; photoluminescence; germanium; infrared source; direct band gap semiconductor; strain engineering; STRAINED-GERMANIUM; GE; SI; EMISSION; GAIN;
D O I
10.1021/acsphotonics.5b00632
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Germanium is an ideal candidate to achieve a monolithically integrated laser source on silicon. Unfortunately bulk germanium is an indirect band gap semiconductor. Here, we demonstrate that a thick germanium layer can be transformed from an indirect into a direct band gap semiconductor by using silicon nitride stressor layers. We achieve 1.75% (1.67%) biaxial tensile strain in 6 (9) mu m diameter microdisks as measured from photoluminescence. The modeling of the photoluminescence amplitude vs temperature indicates that the zone-center Gamma valley has the same energy as the L valley for a 9 mu m diameter strained microdisk and is even less for the 6 mu m diameter microdisk, thus demonstrating that a direct band gap is indeed obtained. We deduce that the crossover in germanium from indirect to direct gap occurs for a 1.67% +/- 0.05% biaxial strain at room temperature, the value of this parameter varying between 1.55% and 2% in the literature.
引用
收藏
页码:443 / 448
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2006, LIGHT EMITTING DIODE
[2]   Recent advances in germanium emission [Invited] [J].
Boucaud, P. ;
El Kurdi, M. ;
Ghrib, A. ;
Prost, M. ;
de Kersauson, M. ;
Sauvage, S. ;
Aniel, F. ;
Checoury, X. ;
Beaudoin, G. ;
Largeau, L. ;
Sagnes, I. ;
Ndong, G. ;
Chaigneau, M. ;
Ossikovski, R. .
PHOTONICS RESEARCH, 2013, 1 (03) :102-109
[3]   Light emission from strained germanium [J].
Boucaud, P. ;
El Kurdi, M. ;
Sauvage, S. ;
de Kersauson, M. ;
Ghriband, A. ;
Checoury, X. .
NATURE PHOTONICS, 2013, 7 (03) :162-162
[4]   Strained-Germanium Nanostructures for Infrared Photonics [J].
Boztug, Cicek ;
Sanchez-Perez, Jose R. ;
Cavallo, Francesca ;
Lagally, Max G. ;
Paiella, Roberto .
ACS NANO, 2014, 8 (04) :3136-3151
[5]   Direct band gap narrowing in highly doped Ge [J].
Camacho-Aguilera, Rodolfo ;
Han, Zhaohong ;
Cai, Yan ;
Kimerling, Lionel C. ;
Michel, Jurgen .
APPLIED PHYSICS LETTERS, 2013, 102 (15)
[6]   Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach [J].
Capellini, G. ;
Kozlowski, G. ;
Yamamoto, Y. ;
Lisker, M. ;
Wenger, C. ;
Niu, G. ;
Zaumseil, P. ;
Tillack, B. ;
Ghrib, A. ;
de Kersauson, M. ;
El Kurdi, M. ;
Boucaud, P. ;
Schroeder, T. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (01)
[7]   ENERGY-BAND STRUCTURE OF GERMANIUM AND SILICON - K.P METHOD [J].
CARDONA, M ;
POLLAK, FH .
PHYSICAL REVIEW, 1966, 142 (02) :530-&
[8]   Optical critical points of thin-film Ge1-ySny alloys:: A comparative Ge1-ySny/Ge1-xSix study [J].
D'Costa, VR ;
Cook, CS ;
Birdwell, AG ;
Littler, CL ;
Canonico, M ;
Zollner, S ;
Kouvetakis, J ;
Menéndez, J .
PHYSICAL REVIEW B, 2006, 73 (12)
[9]   Optical gain in single tensile-strained germanium photonic wire [J].
de Kersauson, M. ;
El Kurdi, M. ;
David, S. ;
Checoury, X. ;
Fishman, G. ;
Sauvage, S. ;
Jakomin, R. ;
Beaudoin, G. ;
Sagnes, I. ;
Boucaud, P. .
OPTICS EXPRESS, 2011, 19 (19) :17925-17934
[10]   Direct and indirect band gap room temperature electroluminescence of Ge diodes [J].
de Kersauson, M. ;
Jakomin, R. ;
El Kurdi, M. ;
Beaudoin, G. ;
Zerounian, N. ;
Aniel, F. ;
Sauvage, S. ;
Sagnes, I. ;
Boucaud, P. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (02)