De novo pathway-based biomarker identification

被引:38
作者
Alcaraz, Nicolas [1 ,2 ,3 ]
List, Markus [4 ]
Batra, Richa [5 ,6 ]
Vandin, Fabio [1 ,7 ]
Ditzel, Henrik J. [2 ,8 ]
Baumbach, Jan [1 ,9 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense, Denmark
[2] Univ Southern Denmark, Inst Mol Med, Dept Canc & Inflammat Res, DK-5000 Odense, Denmark
[3] Univ Copenhagen, Dept Biol, Bioinformat Ctr, DK-2200 Copenhagen, Denmark
[4] Max Planck Inst Informat, Computat Biol & Appl Algorithms, Saarland Informat Campus, D-66123 Saarbrucken, Germany
[5] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Munich, Germany
[6] Tech Univ Munich, Dept Dermatol & Allergy, D-80802 Munich, Germany
[7] Univ Padowa, Dept Informat & Engn, I-35122 Padowa, Italy
[8] Odense Univ Hosp, Dept Oncol, DK-5000 Odense, Denmark
[9] Max Planck Inst Informat, Computat Syst Biol Grp, Saarland Informat Campus, D-66123 Saarbrucken, Germany
关键词
BREAST-CANCER; GENE-EXPRESSION; FUNCTIONAL MODULES; R-PACKAGE; CLASSIFICATION; MICROARRAY; SELECTION; PERFORMANCE; ROBUSTNESS; VALIDATION;
D O I
10.1093/nar/gkx642
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression profiles have been extensively discussed as an aid to guide the therapy by predicting disease outcome for the patients suffering from complex diseases, such as cancer. However, prediction models built upon single-gene (SG) features show poor stability and performance on independent datasets. Attempts to mitigate these drawbacks have led to the development of network-based approaches that integrate pathway information to produce meta-gene (MG) features. Also, MG approaches have only dealt with the two-class problem of good versus poor outcome prediction. Stratifying patients based on their molecular subtypes can provide a detailed view of the disease and lead to more personalized therapies. We propose and discuss a novel MG approach based on de novo pathways, which for the first time have been used as features in a multi-class setting to predict cancer subtypes. Comprehensive evaluation in a large cohort of breast cancer samples from The Cancer Genome Atlas (TCGA) revealed that MGs are considerably more stable than SG models, while also providing valuable insight into the cancer hallmarks that drive them. In addition, when tested on an independent benchmark non-TCGA dataset, MG features consistently outperformed SG models. We provide an easy-touse web service at http:// pathclass. compbio. sdu. dk where users can upload their own gene expression datasets from breast cancer studies and obtain the subtype predictions from all the classifiers.
引用
收藏
页数:11
相关论文
共 61 条
[1]  
Alcaraz Nicolas, 2016, F1000Res, V5, P1531, DOI 10.12688/f1000research.9054.1
[2]   Efficient key pathway mining: combining networks and OMICS data [J].
Alcaraz, Nicolas ;
Friedrich, Tobias ;
Koetzing, Timo ;
Krohmer, Anton ;
Mueller, Joachim ;
Pauling, Josch ;
Baumbach, Jan .
INTEGRATIVE BIOLOGY, 2012, 4 (07) :756-764
[3]   FERAL: network-based classifier with application to breast cancer outcome prediction [J].
Allahyar, Amin ;
de Ridder, Jeroen .
BIOINFORMATICS, 2015, 31 (12) :311-319
[4]  
[Anonymous], 2013, BIO MED RES INT
[5]   Predictive Value of Epithelial Gene Expression Profiles for Response to Infliximab in Crohn's Disease [J].
Arijs, Ingrid ;
Quintens, Roel ;
Van Lommel, Leentje ;
Van Steen, Kristel ;
De Hertogh, Gert ;
Lemaire, Katleen ;
Schraenen, Anica ;
Perrier, Clementine ;
Van Assche, Gert ;
Vermeire, Severine ;
Geboes, Karel ;
Schuit, Frans ;
Rutgeerts, Paul .
INFLAMMATORY BOWEL DISEASES, 2010, 16 (12) :2090-2098
[6]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[7]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[8]   On the performance of de novo pathway enrichment [J].
Batra, Richa ;
Alcaraz, Nicolas ;
Gitzhofer, Kevin ;
Pauling, Josch ;
Ditzel, Henrik J. ;
Hellmuth, Marc ;
Baumbach, Jan ;
List, Markus .
NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2017, 3
[9]   Robustness and accuracy of functional modules in integrated network analysis [J].
Beisser, Daniela ;
Brunkhorst, Stefan ;
Dandekar, Thomas ;
Klau, Gunnar W. ;
Dittrich, Marcus T. ;
Mueller, Tobias .
BIOINFORMATICS, 2012, 28 (14) :1887-1894
[10]   BioNet: an R-Package for the functional analysis of biological networks [J].
Beisser, Daniela ;
Klau, Gunnar W. ;
Dandekar, Thomas ;
Muller, Tobias ;
Dittrich, Marcus T. .
BIOINFORMATICS, 2010, 26 (08) :1129-1130