Simultaneous Surface-Near and Solution Fluorescence Correlation Spectroscopy

被引:4
作者
Winterflood, Christian M. [1 ]
Seeger, Stefan [2 ]
机构
[1] Kings Coll London, Randall Div Cell & Mol Biophys, London SE1 1UL, England
[2] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Fluorescence correlation spectroscopy; Supercritical angle fluorescence; Undercritical angle fluorescence; Surface-selective; Near-field; Far-field; TOTAL INTERNAL-REFLECTION; TIR-FCS; DIFFUSION; ARTIFACTS; VOLUME;
D O I
10.1007/s10895-016-1789-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report the first simultaneous measurement of surface-confined and solution fluorescence correlation spectroscopy (FCS). We use an optical configuration for tightly focused excitation and separate detection of light emitted below (undercritical angle fluorescence, UAF) and above (supercritical angle fluorescence, SAF) the critical angle of total internal reflection of the coverslip/sample interface. This creates two laterally coincident detection volumes which differ in their axial extent. While detection of far-field UAF emission producesa standard confocal volume, near-field-mediated SAF produces a highly surface-confined detection volume at the coverslip/sample interface which extends only similar to 200 nm into the sample. A characterization of the two detection volumes by FCS of free diffusion is presented and compared with analytical models and simulations. The presented FCS technique allows to determine bulk solution concentrations and surface-near concentrations at the same time.
引用
收藏
页码:753 / 756
页数:4
相关论文
共 50 条
[31]   Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection [J].
Wenger, Jerome ;
Rigneault, Herve .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2010, 11 (01) :206-221
[32]   Near-field optical probes provide subdiffraction-limited excitation areas for fluorescence correlation spectroscopy on membranes [J].
Vobornik, Dusan ;
Banks, Daniel S. ;
Lu, Zhengfang ;
Fradin, Cecile ;
Taylor, Rod ;
Johnston, Linda J. .
PURE AND APPLIED CHEMISTRY, 2009, 81 (09) :1645-1653
[33]   Reduction of Artifacts in Fluorescence Correlation Spectroscopy Due to Sample Adsorption on Optical Glass Surfaces [J].
Turner, Daniel K. ;
Wayman, Ashley E. ;
Rolando, Chelsey N. ;
Dande, Prasad ;
Carter, Phillip W. ;
Remsen, Edward E. .
APPLIED SPECTROSCOPY, 2013, 67 (06) :692-698
[34]   Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy [J].
Breusegem, Sophia Y. ;
Levi, Moshe ;
Barry, Nicholas P. .
NEPHRON EXPERIMENTAL NEPHROLOGY, 2006, 103 (02) :E41-E49
[35]   In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy [J].
Muetze, Joerg ;
Ohrt, Thomas ;
Petrasek, Zdenek ;
Schwille, Petra .
SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY, 2010, 96 :139-154
[36]   Fluorescence correlation microscopy (FCM) - Fluorescence correlation spectroscopy (FCS) taken into the cell [J].
Brock, R ;
Jovin, TM .
CELLULAR AND MOLECULAR BIOLOGY, 1998, 44 (05) :847-856
[37]   Fluorescence correlation spectroscopy in polymer science [J].
Woell, Dominik .
RSC ADVANCES, 2014, 4 (05) :2447-2465
[38]   Polymers in focus: fluorescence correlation spectroscopy [J].
Christine M. Papadakis ;
Peter Košovan ;
Walter Richtering ;
Dominik Wöll .
Colloid and Polymer Science, 2014, 292 :2399-2411
[39]   Fluorescence correlation spectroscopy in an optical trap [J].
Hu, Yi ;
Cheng, Xuanhong ;
Ou-Yang, H. Daniel .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION VII, 2010, 7762
[40]   Art and artifacts of fluorescence correlation spectroscopy [J].
Enderlein, J ;
Gregor, I ;
Patra, D ;
Dertinger, T .
IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES AND CELLS: FUNDAMENTALS AND APPLICATIONS III, 2005, 5699 :167-174