Nonlinear Dynamical System Identification Based on Evolutionary Interval Type-2 TSK Fuzzy Systems

被引:0
|
作者
Zhang Jianhua [1 ]
Chen Hongjie [1 ]
Wang Rubin [2 ]
机构
[1] E China Univ Sci & Technol, Sch Informat Sci & Engn, Shanghai 200237, Peoples R China
[2] E China Univ Sci & Technol, Sch Sci, Shanghai 200237, Peoples R China
来源
2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC) | 2015年
关键词
IT2FLS; Evolutionary strategy; Hybrid learning; EIASC; Nonlinear systems identification; LOGIC SYSTEMS; NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For an interval type-2 fuzzy logic system (IT2FLS), its structure and parameters are learned simultaneously by using evolutionary strategy in this paper. Then gradient descent (GD) and recursive least-squares with forgetting factor (FFRLS) algorithms are employed to optimize the parameters of the IT2FLS. Furthermore, a more efficient type-reduction method, called enhanced iterative algorithm with stop condition (EIASC), is utilized. Finally, an evolutionary interval type-2 TSK fuzzy logic system (EIT2FLS) is developed. The results of applying EIT2FLS to nonlinear systems identification problems demonstrated the superiority of the developed EIT2FLS to existing methods.
引用
收藏
页码:2900 / 2905
页数:6
相关论文
共 50 条
  • [1] Stability Analysis of Discrete Type-2 TSK Fuzzy Systems with Interval Uncertainty
    Jafarzadeh, Saeed
    Fadali, M. Sami
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [2] A variable selection method for a hierarchical interval type-2 TSK fuzzy inference system *
    Wei, Xiang-Ji
    Zhang, Da-Qing
    Huang, Sheng-Juan
    FUZZY SETS AND SYSTEMS, 2022, 438 : 46 - 61
  • [3] Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part
    Tavoosi, Jafar
    Suratgar, Amir Abolfazl
    Menhaj, Mohammad Bagher
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (01) : 47 - 56
  • [4] An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination
    Lin, Chin-Teng
    Pal, Nikhil R.
    Wu, Shang-Lin
    Liu, Yu-Ting
    Lin, Yang-Yin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) : 1442 - 1455
  • [5] A Support Vector-Based Interval Type-2 Fuzzy System
    Uslan, Volkan
    Seker, Huseyin
    John, Robert
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2396 - 2401
  • [6] Relational Type-2 Interval Fuzzy Systems
    Scherer, Rafal
    Starczewski, Janusz T.
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 360 - 368
  • [7] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526
  • [8] Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems
    Lin, Tsung-Chih
    Liu, Han-Leih
    Kuo, Ming-Jen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (03) : 420 - 430
  • [9] Observer based adaptive interval type-2 fuzzy sliding mode control for unknown nonlinear systems
    Wu, Hongzhuang
    Liu, Songyong
    Cheng, Cheng
    Du, Changlong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (02) : 1799 - 1810
  • [10] Interval Type-2 Fuzzy Set-Theoretic Control Design for Uncertain Dynamical Systems
    Liu, Yifan
    Yin, Hui
    Xia, Baizhan
    Yu, Dejie
    Chen, Ye-Hwa
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (03) : 1069 - 1087