Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion

被引:127
|
作者
Sui, Jing [1 ,2 ,3 ,4 ,5 ]
Qi, Shile [1 ,2 ,4 ]
van Erp, Theo G. M. [6 ]
Bustillo, Juan [7 ]
Jiang, Rongtao [1 ,2 ,4 ]
Lin, Dongdong [3 ]
Turner, Jessica A. [3 ,8 ]
Damaraju, Eswar [3 ]
Mayer, Andrew R. [3 ,7 ]
Cui, Yue [1 ,2 ]
Fu, Zening [3 ]
Du, Yuhui [3 ]
Chen, Jiayu [3 ]
Potkin, Steven G. [6 ]
Preda, Adrian [6 ]
Mathalon, Daniel H. [9 ,10 ]
Ford, Judith M. [9 ,10 ]
Voyvodic, James [11 ]
Mueller, Bryon A. [12 ]
Belger, Aysenil [13 ]
McEwen, Sarah C. [14 ]
O'Leary, Daniel S. [15 ]
McMahon, Agnes [16 ]
Jiang, Tianzi [1 ,2 ,4 ,5 ]
Calhoun, Vince D. [3 ,7 ,17 ]
机构
[1] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[3] Mind Res Network, Albuquerque, NM 87106 USA
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
[6] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92697 USA
[7] Univ New Mexico, Dept Psychiat, Albuquerque, NM 87131 USA
[8] Georgia State Univ, Dept Psychol & Neurosci, Atlanta, GA 30302 USA
[9] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
[10] San Francisco VA Med Ctr, San Francisco, CA 94143 USA
[11] Duke Univ, Dept Radiol, Brain Imaging & Anal Ctr, Durham, NC 27710 USA
[12] Univ Minnesota, Dept Psychiat, Minneapolis, MN 55455 USA
[13] Univ N Carolina, Dept Psychiat, Sch Med, Chapel Hill, NC 27599 USA
[14] Univ Calif San Diego, Dept Psychiat, San Diego, CA 92103 USA
[15] Univ Iowa, Dept Psychiat, Carver Coll Med, Iowa City, IA 52242 USA
[16] Univ Southern Calif, USC Stevens Neuroimaging & Informat Inst, San Diego, CA 90033 USA
[17] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
WHITE-MATTER ABNORMALITIES; WORKING-MEMORY; BRAIN NETWORKS; CONNECTIVITY NETWORKS; DEFICITS; INDIVIDUALS; BIOMARKERS; NAIVE; IDENTIFICATION; ASSOCIATIONS;
D O I
10.1038/s41467-018-05432-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define-in three separate cohorts-promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multimodal Integration of Brain Images for MRI-Based Diagnosis in Schizophrenia
    Salvador, Raymond
    Canales-Rodriguez, Erick
    Guerrero-Pedraza, Amalia
    Sarro, Salvador
    Tordesillas-Gutierrez, Diana
    Maristany, Teresa
    Crespo-Facorro, Benedicto
    McKenna, Peter
    Pomarol-Clotet, Edith
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [42] The network characteristics in schizophrenia with prominent negative symptoms: a multimodal fusion study
    Kong, Li
    Zhang, Yao
    Wu, Xu-ming
    Wang, Xiao-xiao
    Wu, Hai-su
    Li, Shuai-biao
    Chu, Min-yi
    Wang, Yi
    Lui, Simon S. Y.
    Lv, Qin-yu
    Yi, Zheng-hui
    Chan, Raymond C. K.
    SCHIZOPHRENIA, 2024, 10 (01)
  • [43] Multimodal fusion via cortical network inspired losses
    Shankar, Shiv
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 1167 - 1178
  • [44] MULTIMODAL FUSION VIA A SERIES OF TRANSFERS FOR NOISE REMOVAL
    Son, Chang-Hwan
    Zhang, Xiao-Ping
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 530 - 534
  • [45] Improving Multimodal fusion via Mutual Dependency Maximisation
    Colombo, Pierre
    Chapuis, Emile
    Labeau, Matthieu
    Clavel, Chloe
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 231 - 245
  • [46] Multimodal Industrial Anomaly Detection via Hybrid Fusion
    Wang, Yue
    Peng, Jinlong
    Zhang, Jiangning
    Yi, Ran
    Wang, Yabiao
    Wang, Chengjie
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8032 - 8041
  • [47] MULTIMODAL IMAGE RETRIEVAL VIA BAYESIAN INFORMATION FUSION
    Zhang, Rui
    Guan, Ling
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 830 - 833
  • [48] Object Detection via Multimodal Adaptive Feature Fusion
    Gao Xiaoqiang
    Chang Kan
    Ling Mingyang
    Yin Mengyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [49] Multimodal image fusion via coupled feature learning
    Veshki, Farshad G.
    Ouzir, Nora
    Vorobyov, Sergiy A.
    Ollila, Esa
    SIGNAL PROCESSING, 2022, 200
  • [50] Multimodal Image-Guided Intervention System For Bronchoscopy And Ebus Fusion
    Higgins, W. E.
    Zang, X.
    Byrnes, P. D.
    Cheirsilp, R.
    Kuhlengel, T.
    Dimmock, A. E.
    Toth, J. W.
    Gilbert, C.
    Bascom, R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189