Multimodal neuromarkers in schizophrenia via cognition-guided MRI fusion

被引:127
|
作者
Sui, Jing [1 ,2 ,3 ,4 ,5 ]
Qi, Shile [1 ,2 ,4 ]
van Erp, Theo G. M. [6 ]
Bustillo, Juan [7 ]
Jiang, Rongtao [1 ,2 ,4 ]
Lin, Dongdong [3 ]
Turner, Jessica A. [3 ,8 ]
Damaraju, Eswar [3 ]
Mayer, Andrew R. [3 ,7 ]
Cui, Yue [1 ,2 ]
Fu, Zening [3 ]
Du, Yuhui [3 ]
Chen, Jiayu [3 ]
Potkin, Steven G. [6 ]
Preda, Adrian [6 ]
Mathalon, Daniel H. [9 ,10 ]
Ford, Judith M. [9 ,10 ]
Voyvodic, James [11 ]
Mueller, Bryon A. [12 ]
Belger, Aysenil [13 ]
McEwen, Sarah C. [14 ]
O'Leary, Daniel S. [15 ]
McMahon, Agnes [16 ]
Jiang, Tianzi [1 ,2 ,4 ,5 ]
Calhoun, Vince D. [3 ,7 ,17 ]
机构
[1] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[3] Mind Res Network, Albuquerque, NM 87106 USA
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
[6] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92697 USA
[7] Univ New Mexico, Dept Psychiat, Albuquerque, NM 87131 USA
[8] Georgia State Univ, Dept Psychol & Neurosci, Atlanta, GA 30302 USA
[9] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
[10] San Francisco VA Med Ctr, San Francisco, CA 94143 USA
[11] Duke Univ, Dept Radiol, Brain Imaging & Anal Ctr, Durham, NC 27710 USA
[12] Univ Minnesota, Dept Psychiat, Minneapolis, MN 55455 USA
[13] Univ N Carolina, Dept Psychiat, Sch Med, Chapel Hill, NC 27599 USA
[14] Univ Calif San Diego, Dept Psychiat, San Diego, CA 92103 USA
[15] Univ Iowa, Dept Psychiat, Carver Coll Med, Iowa City, IA 52242 USA
[16] Univ Southern Calif, USC Stevens Neuroimaging & Informat Inst, San Diego, CA 90033 USA
[17] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
WHITE-MATTER ABNORMALITIES; WORKING-MEMORY; BRAIN NETWORKS; CONNECTIVITY NETWORKS; DEFICITS; INDIVIDUALS; BIOMARKERS; NAIVE; IDENTIFICATION; ASSOCIATIONS;
D O I
10.1038/s41467-018-05432-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cognitive impairment is a feature of many psychiatric diseases, including schizophrenia. Here we aim to identify multimodal biomarkers for quantifying and predicting cognitive performance in individuals with schizophrenia and healthy controls. A supervised learning strategy is used to guide three-way multimodal magnetic resonance imaging (MRI) fusion in two independent cohorts including both healthy individuals and individuals with schizophrenia using multiple cognitive domain scores. Results highlight the salience network (gray matter, GM), corpus callosum (fractional anisotropy, FA), central executive and default-mode networks (fractional amplitude of low-frequency fluctuation, fALFF) as modality-specific biomarkers of generalized cognition. FALFF features are found to be more sensitive to cognitive domain differences, while the salience network in GM and corpus callosum in FA are highly consistent and predictive of multiple cognitive domains. These modality-specific brain regions define-in three separate cohorts-promising co-varying multimodal signatures that can be used as predictors of multi-domain cognition.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Topics Guided Multimodal Fusion Network for Conversational Emotion Recognition
    Yuan, Peicong
    Cai, Guoyong
    Chen, Ming
    Tang, Xiaolv
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 250 - 262
  • [32] Intelligent multimodal medical image fusion with deep guided filtering
    B. Rajalingam
    Fadi Al-Turjman
    R. Santhoshkumar
    M. Rajesh
    Multimedia Systems, 2022, 28 : 1449 - 1463
  • [33] Audio-Guided Fusion Techniques for Multimodal Emotion Analysis
    Shi, Pujin
    Gao, Fei
    PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON MULTIMODAL AND RESPONSIBLE AFFECTIVE COMPUTING, MRAC 2024, 2024, : 62 - 66
  • [34] Multimodal MRI Volumetric Data Fusion With Convolutional Neural Networks
    Liu, Yu
    Shi, Yu
    Mu, Fuhao
    Cheng, Juan
    Li, Chang
    Chen, Xun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [35] Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion
    Liu, Yu
    Mu, Fuhao
    Shi, Yu
    Cheng, Juan
    Li, Chang
    Chen, Xun
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [36] VIEMF: Multimodal metaphor detection via visual information enhancement with multimodal fusion
    He, Xiaoyu
    Yu, Long
    Tian, Shengwei
    Yang, Qimeng
    Long, Jun
    Wang, Bo
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [37] Neurobiological correlates of changes in social cognition in schizophrenia: A structural MRI study
    Eack, Shaun M.
    Geffert, Laura M.
    Prasad, Konasale
    Keshavan, Matcheri S.
    BIOLOGICAL PSYCHIATRY, 2007, 61 (08) : 11S - 11S
  • [38] Multimodal neuroimaging fusion biomarkers mediate the association between gut microbiota and cognition
    Zhu, Jiajia
    Wang, Chunli
    Qian, Yinfeng
    Cai, Huanhuan
    Zhang, Shujun
    Zhang, Cun
    Zhao, Wenming
    Zhang, Tingting
    Zhang, Biao
    Chen, Jingyao
    Liu, Siyu
    Yu, Yongqiang
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2022, 113
  • [39] Intervention and regulatory mechanism of multimodal fusion natural interactions on AR embodied cognition
    Yong, Jiu
    Wei, Jianguo
    Lei, Xiaomei
    Wang, Yangping
    Dang, Jianwu
    Lu, Wenhuan
    INFORMATION FUSION, 2025, 117
  • [40] Multiparametric MRI and MRI/TRUS Fusion Guided Biopsy for the Diagnosis of Prostate Cancer
    Schuetz, Viktoria
    Kesch, Claudia
    Dieffenbacher, Svenja
    Bonekamp, David
    Hadaschik, Boris Alexander
    Hohenfellner, Markus
    Radtke, Jan Philipp
    MOLECULAR & DIAGNOSTIC IMAGING IN PROSTATE CANCER: CLINICAL APPLICATIONS AND TREATMENT STRATEGIES, 2019, 1126 : 87 - 98