Forced (2+1)-dimensional discrete three-wave equation

被引:7
作者
Zhu, Junyi [1 ]
Zhou, Sishou [2 ]
Qiao, Zhijun [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Kashgar Univ, Sch Math & Stat, Kashgar 844006, Xinjiang, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国国家自然科学基金;
关键词
discrete (2+1)-dimensional three-wave equation; partial derivative-dressing method; explicit solution; INVERSE SCATTERING; N-WAVE; TRANSFORMATION; EVOLUTION; SYSTEMS;
D O I
10.1088/1572-9494/ab5fb4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the partial derivative-dressing method to investigate a (2 + 1)-dimensional lattice, which can be regarded as a forced (2 + 1)-dimensional discrete three-wave equation. The soliton solutions to the (2 + 1)-dimensional lattice are given through constructing different symmetry conditions. The asymptotic analysis of one-soliton solution is discussed. For the soliton solution, the forces are zero.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E, DOI 10.1017/CBO9780511623998
[2]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[3]   THE D-BAR APPROACH TO INVERSE SCATTERING AND NONLINEAR EVOLUTIONS [J].
BEALS, R ;
COIFMAN, RR .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :242-249
[4]  
BOGDANOV LV, 1988, J PHYS A, V21, pL53
[5]  
BOGDANOV LV, 1995, J PHYS A, V28, pL17
[6]   1ST AND 2ND-ORDER NONLINEAR EVOLUTION-EQUATIONS FROM AN INVERSE SPECTRAL PROBLEM [J].
BOITI, M ;
PEMPINELLI, F ;
SABATIER, PC .
INVERSE PROBLEMS, 1993, 9 (01) :1-37
[8]   NON-LINEAR RESONANT INSTABILITY IN BOUNDARY LAYERS [J].
CRAIK, ADD .
JOURNAL OF FLUID MECHANICS, 1971, 50 (NOV29) :393-&
[9]   ON THE SOLVABILITY OF THE N-WAVE, DAVEY-STEWARTSON AND KADOMTSEV-PETVIASHVILI EQUATIONS [J].
FOKAS, AS ;
SUNG, LY .
INVERSE PROBLEMS, 1992, 8 (05) :673-708
[10]   THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS [J].
FOKAS, AS ;
ZAKHAROV, VE .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :109-134