Physical limits of flow sensing in the left right organizer

被引:39
作者
Ferreira, Rita R. [1 ,2 ,3 ,4 ]
Vilfan, Andrej [5 ]
Juelicher, Frank [6 ]
Supatto, Willy [7 ,8 ]
Vermot, Julien [1 ,2 ,3 ,4 ]
机构
[1] Inst Genet & Biol Mol & Cellulaire, Illkirch Graffenstaden, France
[2] CNRS, Illkirch Graffenstaden, France
[3] INSERM, Illkirch Graffenstaden, France
[4] Univ Strasbourg, Illkirch Graffenstaden, France
[5] J Stefan Inst, Ljubljana, Slovenia
[6] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
[7] Ecole Polytech, Lab Opt & Biosci, CNRS, INSERM,UMR7645,U1182, Palaiseau, France
[8] Paris Scalay Univ, Palaiseau, France
关键词
LEFT-RIGHT ASYMMETRY; ZEBRAFISH KUPFFERS VESICLE; BREAKS BILATERAL SYMMETRY; PRIMARY CILIA; EMBRYONIC-DEVELOPMENT; FLUID-FLOW; NODAL FLOW; ENDOTHELIAL CILIA; MOTILE CILIA; MOUSE EMBRYO;
D O I
10.7554/eLife.25078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment.
引用
收藏
页数:27
相关论文
共 78 条
[1]   Intracellular and extracellular forces drive primary cilia movement [J].
Battle, Christopher ;
Ott, Carolyn M. ;
Burnette, Dylan T. ;
Lippincott-Schwartz, Jennifer ;
Schmidt, Christoph F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (05) :1410-1415
[2]  
Berens P, 2009, J STAT SOFTWARE, V31
[3]   Symmetry breakage in the vertebrate embryo: When does it happen and how does it work? [J].
Blum, Martin ;
Schweickert, Axel ;
Vick, Philipp ;
Wright, Christopher V. E. ;
Danilchik, Michael V. .
DEVELOPMENTAL BIOLOGY, 2014, 393 (01) :109-123
[4]   The evolution and conservation of left-right patterning mechanisms [J].
Blum, Martin ;
Feistel, Kerstin ;
Thumberger, Thomas ;
Schweickert, Axel .
DEVELOPMENT, 2014, 141 (08) :1603-1613
[5]   Xenopus, an Ideal Model System to Study Vertebrate Left-Right Asymmetry [J].
Blum, Martin ;
Beyer, Tina ;
Weber, Thomas ;
Vick, Philipp ;
Andre, Philipp ;
Bitzer, Eva ;
Schweickert, Axel .
DEVELOPMENTAL DYNAMICS, 2009, 238 (06) :1215-1225
[6]   Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia [J].
Borovina, Antonia ;
Superina, Simone ;
Voskas, Daniel ;
Ciruna, Brian .
NATURE CELL BIOLOGY, 2010, 12 (04) :407-U242
[7]  
BROWN NA, 1990, DEVELOPMENT, V109, P1
[8]   Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates [J].
Cartwright, JHE ;
Piro, O ;
Tuval, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (19) :7234-7239
[9]   Shedding microvesicles: artefacts no more [J].
Cocucci, Emanuele ;
Racchetti, Gabriella ;
Meldolesi, Jacopo .
TRENDS IN CELL BIOLOGY, 2009, 19 (02) :43-51
[10]   The Notochord Breaks Bilateral Symmetry by Controlling Cell Shapes in the Zebrafish Laterality Organ [J].
Compagnon, Julien ;
Barone, Vanessa ;
Rajshekar, Srivarsha ;
Kottmeier, Rita ;
Pranjic-Ferscha, Kornelija ;
Behrndt, Martin ;
Heisenberg, Carl-Philipp .
DEVELOPMENTAL CELL, 2014, 31 (06) :774-783