Global well-posedness of inviscid lake equations in the Besov spaces

被引:0
|
作者
Li, Yatao [1 ]
Liu, Jitao [2 ]
Wu, Yanxia [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst MOE, Beijing 100875, Peoples R China
[2] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
[3] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Besov spaces; global well-posedness; inviscid lake equations; EULER EQUATIONS; EXISTENCE; TOPOGRAPHY; UNIQUENESS; VISCOSITY; LIMITS;
D O I
10.1002/mma.8322
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we make the first attempt to investigate the Cauchy problem of a shallow water model, namely, the inviscid lake equations, in the Besov spaces. Notably, we prove the global existence and uniqueness of the solutions in the Besov spaces Bp,qs(Double-struck capital R2)$$ {B}_{p,q} circumflex s\left({\mathbb{R}} circumflex 2\right) $$ for s>2p+1$$ s >\frac{2}{p}+1 $$ and s=2p+1$$ s equal to \frac{2}{p}+1 $$ if q=1$$ q equal to 1 $$, which contain the particular case of the endpoint Besov space B infinity,11(Double-struck capital R2)$$ {B}_{\infty, 1} circumflex 1\left({\mathbb{R}} circumflex 2\right) $$.
引用
收藏
页码:9545 / 9559
页数:15
相关论文
共 50 条