Asymptotics of k dimensional spherical integrals and applications

被引:3
作者
Guionnet, Alice [1 ]
Husson, Jonathan [2 ]
机构
[1] Univ Lyon, ENSL, CNRS, Lyon, France
[2] Univ Michigan, Ann Arbor, MI 48109 USA
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2022年 / 19卷 / 01期
基金
欧洲研究理事会;
关键词
  Random matrices; Spherical integrals; Large deviations; LARGE DEVIATIONS; LARGEST EIGENVALUE; HORNS PROBLEM; DEFORMATIONS;
D O I
10.30757/ALEA.v19-30
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we prove that k-dimensional spherical integrals are asymptotically equiv-alent to the product of 1-dimensional spherical integrals. This allows us to generalize several large deviations principles known before only in a one-dimensional case. For example, we prove the uni-versality of the large deviations principle for the law of k extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with general variance profiles) with sharp sub-Gaussian entries, as well as derive large deviations principles for the distribution of extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite dimensional perturbation.
引用
收藏
页码:769 / 797
页数:29
相关论文
共 27 条
[1]  
Anderson G., 2010, CAMBRIDGE STUDIES AD
[2]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[3]  
Belinschi S., 2020, ARXIV MATH E PRINTS
[4]  
Ben Arous G, 2001, PROBAB THEORY REL, V120, P1
[5]   Rectangular R-Transform as the Limit of Rectangular Spherical Integrals [J].
Benaych-Georges, Florent .
JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (04) :969-987
[6]   Large deviations for the largest eigenvalues and eigenvectors of spiked Gaussian random matrices [J].
Biroli, Giulio ;
Guionnet, Alice .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 :1-13
[8]   Product of random projections, Jacobi ensembles and universality problems arising from free probability [J].
Collins, B .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) :315-344
[9]   New scaling of Itzykson-Zuber integrals [J].
Collins, Benoit ;
Sniady, Piotr .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02) :139-146
[10]   Asymptotics of unitary and orthogonal matrix integrals [J].
Collins, Benoit ;
Guionnet, Alice ;
Maurel-Segala, Edouard .
ADVANCES IN MATHEMATICS, 2009, 222 (01) :172-215