Wavelets for the space-time structure analysis of physical fields

被引:11
|
作者
Frick, P. G. [1 ,2 ]
Sokoloff, D. D. [3 ,4 ,5 ]
Stepanov, R. A. [1 ,6 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Continuous Media Mech, Ul Akad Koroleva 1, Perm 614013, Russia
[2] Perm State Natl Res Univ, Ul Bukireva 15, Perm 614068, Russia
[3] Lomonosov Moscow State Univ, Dept Phys, Leninskie Gory 1, Moscow 119991, Russia
[4] Moscow Ctr Fundamental & Appl Math, Leninskie Gory 1, Moscow 119991, Russia
[5] Russian Acad Sci, Pushkov Inst Terr Magnetism Ionosphere & Radio Wa, Kaluzhskoe Shosse 4, Moscow 108840, Russia
[6] Perm Natl Res Polytech Univ, Prosp Komsomolskii 29, Perm 614990, Russia
基金
俄罗斯基础研究基金会;
关键词
signals and images; solar and stellar activity; galactic mag-netic fields; geophysics; medical physics; SOLAR-ACTIVITY; SPIRAL ARMS; MAGNETIC-FIELDS; CHROMOSPHERIC ACTIVITY; SPIN-DOWN; MHD FLOW; PERIODICITIES; TEMPERATURE; ROTATION; WAVES;
D O I
10.3367/UFNe.2020.10.038859
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spectral analysis, based on the Fourier method, is a general tool in physics. Wavelets appeared as a natural generalization of classical spectral analysis to the case of complex nonstationary and spatially inhomogeneous systems, for which a comparison with an infinite sinusoid, which forms the basis of the Fourier method, has to be replaced by a comparison with a finite wave packet, which is known as a wavelet. In this review, the authors, based largely on their own experience of application wavelet analysis in astro-and geophysics, solar-terrestrial relations, as well as climatology, medical physics, and laboratory hydrodynamic experiments, demonstrate the possibilities and discuss the practical aspects of the application of the wavelet apparatus to the interpretation of signals and images of various physical natures.
引用
收藏
页码:62 / 89
页数:29
相关论文
共 50 条
  • [21] Space-Time Variability of Drought Characteristics in Pernambuco, Brazil
    da Silva Junior, Ivanildo Batista
    Araujo, Lidiane da Silva
    Stosic, Tatijana
    Menezes, Romulo Simoes Cezar
    da Silva, Antonio Samuel Alves
    WATER, 2024, 16 (11)
  • [22] Energy of gravitational radiation and the background energy of the space-time
    Maluf, J. W.
    Carneiro, F. L.
    Ulhoa, S. C.
    da Rocha-Neto, J. F.
    PHYSICS LETTERS B, 2024, 858
  • [23] Propagation-invariant space-time caustics of light
    Wong, Liang Jie
    OPTICS EXPRESS, 2021, 29 (19) : 30682 - 30693
  • [24] A traveling epidemic model of space-time disease spread
    Christakos, George
    Zhang, Chutian
    He, Junyu
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (02) : 305 - 314
  • [25] Space-Time Wave Extremes: The Role of Metocean Forcings
    Barbariol, Francesco
    Benetazzo, Alvise
    Carniel, Sandro
    Sclavo, Mauro
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2015, 45 (07) : 1897 - 1916
  • [26] BayGEN: A Bayesian Space-Time Stochastic Weather Generator
    Verdin, Andrew
    Rajagopalan, Balaji
    Kleiber, William
    Podesta, Guillermo
    Bert, Federico
    WATER RESOURCES RESEARCH, 2019, 55 (04) : 2900 - 2915
  • [27] High-resolution space-time rainfall analysis using integrated ANN inference systems
    Langella, G.
    Basile, A.
    Bonfante, A.
    Terribile, F.
    JOURNAL OF HYDROLOGY, 2010, 387 (3-4) : 328 - 342
  • [28] Space-time statistical analysis and modelling of nitrogen use efficiency indicators at provincial scale in China
    Liu, Yingxia
    Heuvelink, Gerard B. M.
    Bai, Zhanguo
    He, Ping
    Xu, Xinpeng
    Ma, Jinchuan
    Masiliunas, Dainius
    EUROPEAN JOURNAL OF AGRONOMY, 2020, 115
  • [29] Scalar field in a uniformly rotating frame in the time-dislocation space-time
    Bakke, K.
    Bezerra, V. B.
    Vitoria, R. L. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (22):
  • [30] CCD-based imaging and 3D space-time mapping of terahertz fields via Kerr frequency conversion
    Clerici, Matteo
    Faccio, Daniele
    Caspani, Lucia
    Peccianti, Marco
    Rubino, Eleonora
    Razzari, Luca
    Legare, Francois
    Ozaki, Tsuneyuki
    Morandotti, Roberto
    OPTICS LETTERS, 2013, 38 (11) : 1899 - 1901