hPIC: A scalable electrostatic Particle-in-Cell for Plasma-Material Interactions

被引:22
作者
Khaziev, Rinat [1 ]
Curreli, Davide [1 ]
机构
[1] Univ Illinois, Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA
关键词
Particle-in-Cell; Electrostatic; High performance computing; Plasma-Material Interactions; Boundary layer effects; SIMULATION CODE; IMPLEMENTATION; TRANSPORT; TRIDYN;
D O I
10.1016/j.cpc.2018.03.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The hPIC code is a fully-kinetic electrostatic Particle-in-Cell application targeted at large-scale simulations of Plasma-Material Interactions. The code can simulate multi-component strongly-magnetized plasmas in a region close to the wall, including the magnetic sheath and presheath, plus the first surface layers which release material impurities. The Poisson solver is based on PETSc conjugate gradient with BoomerAMG algebraic multigrid preconditioners. Scaling tests on the Blue Waters supercomputer have demonstrated excellent weak-scaling (tested up to 65,536 cores) and good strong-scaling up to 262,144 cores. In this paper, we will make an overview of the main features of the code and of the scaling performance as measured on the Blue Waters supercomputer at Illinois. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 98
页数:12
相关论文
共 36 条
[1]   Scaling to 150K cores: recent algorithm and performance engineering developments enabling XGC1 to run at scale [J].
Adams, Mark F. ;
Ku, Seung-Hoe ;
Worley, Patrick ;
D'Azevedo, Ed ;
Cummings, Julian C. ;
Chang, C-S .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[2]  
[Anonymous], 1970, P 4 C NUM SIM PLASM
[3]  
Baker A.H., 2012, High-Performance Scientific Computing: Algorithms and Applications, P261, DOI DOI 10.1007/978-1-4471-2437-5_13
[4]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[5]  
Balay S., 2019, PETSc Users Manual
[6]   DESIGNING BROADCASTING ALGORITHMS IN THE POSTAL MODEL FOR MESSAGE-PASSING SYSTEMS [J].
BARNOY, A ;
KIPNIS, S .
MATHEMATICAL SYSTEMS THEORY, 1994, 27 (05) :431-452
[7]  
Birdsall C. K., 1991, PARTICLE CELL CHARGE
[8]  
Bonoli P., 2015, TECH REP, P166
[9]   Advances in petascale kinetic plasma simulation with VPIC and Roadrunner [J].
Bowers, K. J. ;
Albright, B. J. ;
Yin, L. ;
Daughton, W. ;
Roytershteyn, V. ;
Bergen, B. ;
Kwan, T. J. T. .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[10]   Toward a first-principles integrated simulation of tokamak edge plasmas [J].
Chang, C. S. ;
Klasky, S. ;
Cummings, J. ;
Samtaney, R. ;
Shoshani, A. ;
Sugiyama, L. ;
Keyes, D. ;
Ku, S. ;
Park, G. ;
Parker, S. ;
Podhorszki, N. ;
Strauss, H. ;
Abbasi, H. ;
Adams, M. ;
Barreto, R. ;
Bateman, G. ;
Bennett, K. ;
Chen, Y. ;
Azevedo, E. D' ;
Docan, C. ;
Ethier, S. ;
Feibush, E. ;
Greengard, L. ;
Hahm, T. ;
Hinton, F. ;
Jin, C. ;
Khan, A. ;
Kritz, A. ;
Krsti, P. ;
Lao, T. ;
Lee, W. ;
Lin, Z. ;
Lofstead, J. ;
Mouallem, P. ;
Nagappan, M. ;
Pankin, A. ;
Parashar, M. ;
Pindzola, M. ;
Reinhold, C. ;
Schultz, D. ;
Schwan, K. ;
Silver, D. ;
Sim, A. ;
Stotler, D. ;
Vouk, M. ;
Wolf, M. ;
Weitzner, H. ;
Worley, P. ;
Xiao, Y. ;
Yoon, E. .
SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125