Facial Expression Recognition Based on Convolutional Denoising Autoencoder and XGBoost

被引:0
作者
Yang, Jun [1 ]
Zhang, Damin [1 ]
Pan, Zhiyuan [1 ]
Liu, Dong [1 ]
Chen, Juanmin [1 ]
机构
[1] Guizhou Univ, Coll Big Data & Informat Engn, Guiyang, Guizhou, Peoples R China
来源
PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019) | 2019年
关键词
facial expression recognition; feature extraction; convolutional denoising autoencoder; XGBoost classifier;
D O I
10.1109/itaic.2019.8785596
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to solve the insufficiency of feature extraction in traditional facial expression recognition process and further improve the classification accuracy, a deep learning method combining the convolutional denoising autoencoder and XGBoost model is proposed in this paper. In the early stage of feature extraction, convolutional autoencoder is used to fully learn the high-dimensional complex feature data and reduce the nonlinear dimension. On this basis, noise is introduced into the original image to enhance the robustness and generalization ability of the model. In the later classification process, XGBoost classifier is used to classify the extracted features. Experiments are performed on JAFFE and CK+ facial expression recognition datasets, the results show that this method has better recognition accuracy than other comparison methods.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 18 条
[1]   A principal component analysis of facial expressions [J].
Calder, AJ ;
Burton, AM ;
Miller, P ;
Young, AW ;
Akamatsu, S .
VISION RESEARCH, 2001, 41 (09) :1179-1208
[2]   Rotation-reversal invariant HOG cascade for facial expression recognition [J].
Chen, Jinhui ;
Takiguchi, Tetsuya ;
Ariki, Yasuo .
SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (08) :1485-1492
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study [J].
Dolz, Jose ;
Betrouni, Nacim ;
Quidet, Mathilde ;
Kharroubi, Dris ;
Leroy, Henri A. ;
Reyns, Nicolas ;
Massoptier, Laurent ;
Vermandel, Maximilien .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 52 :8-18
[5]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[6]  
Huang J., 2016, COMPUTER SCI, V43, P123
[7]   Salient feature and reliable classifier selection for facial expression classification [J].
Kyperountas, Marios ;
Tefas, Anastasios ;
Pitas, Ioannis .
PATTERN RECOGNITION, 2010, 43 (03) :972-986
[8]   Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification [J].
Lu, Chen ;
Wang, Zhen-Ya ;
Qin, Wei -Li ;
Ma, Jian .
SIGNAL PROCESSING, 2017, 130 :377-388
[9]   一种用于人脸表情识别的卷积神经网络 [J].
卢官明 ;
何嘉利 ;
闫静杰 ;
李海波 .
南京邮电大学学报(自然科学版), 2016, 36 (01) :16-22
[10]   Bioactive Molecule Prediction Using Extreme Gradient Boosting [J].
Mustapha, Ismail Babajide ;
Saeed, Faisal .
MOLECULES, 2016, 21 (08)