Population median imputation was noninferior to complex approaches for imputing missing values in cardiovascular prediction models in clinical practice

被引:56
作者
Berkelmans, Gijs F. N. [1 ]
Read, Stephanie H. [2 ,3 ]
Gudbjornsdottir, Soffia [4 ]
Wild, Sarah H. [2 ]
Franzen, Stefan [4 ]
van der Graaf, Yolanda [5 ]
Eliasson, Bjorn [4 ,7 ]
Visseren, Frank L. J. [1 ]
Paynter, Nina P. [6 ]
Dorresteijn, Jannick A. N. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Vasc Med, Utrecht, Netherlands
[2] Univ Edinburgh, Usher Inst, Edinburgh, Midlothian, Scotland
[3] Womens Coll Res Inst, Toronto, ON, Canada
[4] Ctr Registers Reg, Swedish Natl Diabet Register, Gothenburg, Sweden
[5] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[6] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[7] Univ Gothenburg, Dept Mol & Clin Med, Inst Med, Gothenburg, Sweden
关键词
Missing patient characteristics; Epidemiology; Cardiovascular risk prediction; Real-world setting; clinical practise; DIFFERENT PERFORMANCE-MEASURES; NATIONAL DIABETES REGISTER; CORONARY-HEART-DISEASE; RISK-FACTORS; COLLABORATION; SIMULATION; ACCURACY; MARKERS; CANCER;
D O I
10.1016/j.jclinepi.2022.01.011
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: To compare the validity and robustness of five methods for handling missing characteristics when using cardiovascular disease risk prediction models for individual patients in a real-world clinical setting. Study design and setting: The performance of the missing data methods was assessed using data from the Swedish National Diabetes Registry (n = 419,533) with external validation using the Scottish Care Information ? diabetes database (n = 226,953). Five methods for handling missing data were compared. Two methods using submodels for each combination of available data, two imputation methods: conditional imputation and median imputation, and one alternative modeling method, called the naive approach, based on hazard ratios and populations statistics of known risk factors only. The validity was compared using calibration plots and c-statistics. Results: C-statistics were similar across methods in both development and validation data sets, that is, 0.82 (95% CI 0.82-0.83) in the Swedish National Diabetes Registry and 0.74 (95% CI 0.74-0.75) in Scottish Care Information-diabetes database. Differences were only observed after random introduction of missing data in the most important predictor variable (i.e., age). Conclusion: Validity and robustness of median imputation was not dissimilar to more complex methods for handling missing values, provided that the most important predictor variables, such as age, are not missing. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 80
页数:11
相关论文
共 32 条
[1]   Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model [J].
Austin, Peter C. ;
Pencinca, Michael J. ;
Steyerberg, Ewout W. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) :1053-1077
[2]   Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
STATISTICS IN MEDICINE, 2013, 32 (04) :661-672
[3]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z]
[4]   Prediction models for cardiovascular disease risk in the general population: systematic review [J].
Damen, Johanna A. A. G. ;
Hooft, Lotty ;
Schuit, Ewoud ;
Debray, Thomas P. A. ;
Collins, Gary S. ;
Tzoulaki, Ioanna ;
Lassale, Camille M. ;
Siontis, George C. M. ;
Chiocchia, Virginia ;
Roberts, Corran ;
Schlussel, Michael Maia ;
Gerry, Stephen ;
Black, James A. ;
Heus, Pauline ;
van der Schouw, Yvonne T. ;
Peelen, Linda M. ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
[5]   Review: A gentle introduction to imputation of missing values [J].
Donders, A. Rogier T. ;
van der Heijden, Geert J. M. G. ;
Stijnen, Theo ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1087-1091
[6]   Imputation of missing longitudinal data: a comparison of methods [J].
Engels, JM ;
Diehr, P .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (10) :968-976
[7]   2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines [J].
Goff, David C., Jr. ;
Lloyd-Jones, Donald M. ;
Bennett, Glen ;
Coady, Sean ;
D'Agostino, Ralph B. ;
Gibbons, Raymond ;
Greenland, Philip ;
Lackland, Daniel T. ;
Levy, Daniel ;
O'Donnell, Christopher J. ;
Robinson, Jennifer G. ;
Schwartz, J. Sanford ;
Shero, Susan T. ;
Smith, Sidney C., Jr. ;
Sorlie, Paul ;
Stone, Neil J. ;
Wilson, Peter W. F. .
CIRCULATION, 2014, 129 (25) :S49-S73
[8]   Bias arising from missing data in predictive models [J].
Gorelick, Marc H. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1115-1123
[9]   A computerised decision support system for cardiovascular risk management 'live' in the electronic health record environment: development, validation and implementation-the Utrecht Cardiovascular Cohort Initiative [J].
Groenhof, T. K. J. ;
Rittersma, Z. H. ;
Bots, M. L. ;
Brandjes, M. ;
Jacobs, J. J. L. ;
Grobbee, D. E. ;
van Solinge, W. W. ;
Visseren, F. L. J. ;
Haitjema, S. ;
Asselbergs, F. W. ;
de Jong, Pim A. ;
Verhaar, Marianne C. ;
Visseren, Frank L. J. ;
Asselbergs, Folkert W. ;
van der Kaaij, Niels P. ;
Hofer, Imo E. ;
de Borst, Gert-Jan ;
Ruigrok, Ynte M. ;
Hollander, Monika ;
Dieleman, Stefan M. ;
Lely, A. Titia ;
Emmelot-Vonk, Marielle H. ;
Bots, Michiel L. .
NETHERLANDS HEART JOURNAL, 2019, 27 (09) :435-442
[10]   The national diabetes register in Sweden -: An implementation of the St. Vincent declaration for quality improvement in diabetes care [J].
Gudbjörnsdottir, S ;
Cederholm, J ;
Nilsson, PM ;
Eliasson, B .
DIABETES CARE, 2003, 26 (04) :1270-1276