Computer Algorithm for Archaeological Projectile Points Automatic Classification

被引:5
作者
Castillo Flores, Fernando [1 ]
Garcia Ugalde, Francisco [1 ]
Punzo Diaz, Jose Luis [2 ]
Zarco Navarro, Jesus [3 ]
Gastelum-Strozzi, Alfonso [4 ]
Del Pilar Angeles, Maria [1 ]
Nakano Miyatake, Mariko [5 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ingn, Ave Univ 3000, Ciudad De Mexico 04510, DF, Mexico
[2] Inst Nacl Antropol E Hist, Archaeol, Madero 369 Col Ctr, Morelia 58000, Michoacan, Mexico
[3] Univ Nacl Autonoma Mexico, Ave Univ 3000, Ciudad De Mexico 04510, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Ave Univ 3000, Ciudad De Mexico 04510, DF, Mexico
[5] Inst Politecn Nacl, SEPI, Ave Santa Ana 1000, Ciudad De Mexico 04510, DF, Mexico
来源
ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE | 2019年 / 12卷 / 03期
关键词
Projectile points; automatic classification; pattern recognition; image analysis; computer vision; CSS-map; lithic technology; GEOMETRIC MORPHOMETRIC-ANALYSIS; IMAGE;
D O I
10.1145/3300972
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
The manual archaeological projectile point morphological classification is an extensive and complex process since it involves a large number of categories. This article presents an algorithm that automatically makes this process, based on the projectile point digital image and using a classification scheme according to global archaeological approaches. The algorithm supports different conditions such as changes in scale and quality of the image. Moreover, it requires only a uniform background and an approximate north-south projectile point orientation. The principal computer methods that compose the algorithm are the curvature scale space map (CSS-map), the gradient contour on the projectile point, and the support vector machines (SVM) algorithm. Finally, the classifier was trained and tested on a dataset of approximately 800 projectile points images, and the results have shown a better performance than other shape descriptors such as Pyramid of Histograms of Orientation Gradients (PHOG), Histogram of Orientation Shape Context (HOOSC) (both used in a bag-of-words context), and geometric moment invariants (Hu moments).
引用
收藏
页数:30
相关论文
共 54 条
[1]   Curvature scale space image in shape similarity retrieval [J].
Abbasi, S ;
Mokhtarian, F ;
Kittler, J .
MULTIMEDIA SYSTEMS, 1999, 7 (06) :467-476
[2]  
Andrefsky W, 2005, CAMB MAN ARCHAEOL, P1, DOI 10.1017/CBO9780511810244
[3]  
[Anonymous], MATLAB OCTAVE FUNCTI
[4]  
[Anonymous], 2005, PROC CVPR IEEE
[5]  
[Anonymous], 2010, ADV NEUR INF PROC SY
[6]  
[Anonymous], 2014, PATTERN RECOGNITION
[7]  
[Anonymous], 2018, OFFICIAL OVERSTREET
[8]  
[Anonymous], 1973, Pattern Classification and Scene Analysis
[9]  
Battiato Sebastiano, 2010, EURASIP J IMAGE VIDE, V1
[10]  
Bookstein F L, 1997, Med Image Anal, V1, P225