Glueing continuous functions constructively

被引:3
作者
Bridges, Douglas S. [1 ]
Loeb, Iris [2 ]
机构
[1] Univ Canterbury, Dept Math & Stat, Christchurch 1, New Zealand
[2] Vrije Univ Amsterdam, Fac Philosophy, NL-1081 HV Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
Constructive mathematics; Continuity; Glueing; Reverse mathematics;
D O I
10.1007/s00153-010-0189-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The glueing of (sequentially, pointwise, or uniformly) continuous functions that coincide on the intersection of their closed domains is examined in the light of Bishop-style constructive analysis. This requires us to pay attention to the way that the two domains intersect.
引用
收藏
页码:603 / 616
页数:14
相关论文
共 24 条
[1]  
Aczel P.H.G., 2001, 40 ROYAL SWED AC SCI
[2]  
Armstrong MA., 1983, BASIC TOPOLOGY
[3]  
Berger J, 2005, LECT NOTES COMPUT SC, V3526, P18
[4]  
BERGER J, 2008, NZ J MATH, V38, P129
[5]  
BISHOP EA, 1985, GRUNDLEHREN MATH WIS, V279
[6]  
Bishop Errett., 1967, Foundations of Constructive Analysis
[7]  
Bridges D., 1987, London Mathematical Society Lecture Note Series, V97
[8]   The pseudocompactness of [0,1] is equivalent to the uniform continuity theorem [J].
Bridges, Douglas ;
Diener, Hannes .
JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (04) :1379-1384
[9]  
Bridges Douglas S., 2006, Techniques of Constructive Analysis
[10]   COMPLEMENTS OF INTERSECTIONS IN CONSTRUCTIVE MATHEMATICS [J].
BRIDGES, DS ;
ISHIHARA, H .
MATHEMATICAL LOGIC QUARTERLY, 1994, 40 (01) :35-43