COMMUTATORS OF RIESZ TRANSFORMS WITH LIPSCHITZ FUNCTIONS RELATED TO MAGNETIC SCHRODINGER OPERATORS

被引:1
作者
Yang, Dongyong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 01期
关键词
Riesz transform; magnetic Schrodinger operator; commutator; Lipschitz space; admissible function; HARDY-SPACES; POTENTIALS;
D O I
10.7153/mia-19-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A : = -(del - i (a) over right arrow) . (del - i (a) over right arrow) + V be a magnetic Schrodinger operator on L-2(R-n), n >= 2, where (a) over right arrow : = (a(1), ..., a(n)) is an element of L-loc(2) (R-n, R-n) and 0 <= V is an element of L-loc(1) (R-n). In this paper, the author shows that the commutators of the Riesz transforms L(k)A(-1/2), k is an element of {1, ..., n}, with functions in Lipschitz space Lip(alpha) (R-n) for alpha is an element of (0,1), are bounded from L-p(R-n) to L-q(R-n), where 1/p-1/q = alpha/n and L-k is the closure of partial derivative/partial derivative x(k) - ia(k) in L-2(R-n). Let rho be an admissible function modeled on the known auxiliary function determined by the Schrodinger operator -Delta+V. The author also characterizes a localized Lipschitz space Lip(alpha,rho) (R-n) in terms of the localized Riesz transforms {(R) over tilde (j)}(j=1)(n) and their adjoint operators.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 16 条
[1]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[2]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[3]   Commutators of Riesz transforms of magnetic Schrodinger operators [J].
Duong, Xuan Thinh ;
Yan, Lixin .
MANUSCRIPTA MATHEMATICA, 2008, 127 (02) :219-234
[4]   Endpoint estimates for Riesz transforms of magnetic Schrodinger operators [J].
Duong, Xuan Thinh ;
Ouhabaz, El Maati ;
Yan, Lixin .
ARKIV FOR MATEMATIK, 2006, 44 (02) :261-275
[5]   BMO spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality [J].
Dziubanski, J ;
Garrigós, G ;
Martínez, T ;
Torrea, JL ;
Zienkiewicz, J .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (02) :329-356
[6]  
Grafakos L., 2004, Classical and Modern Fourier Analysis
[7]   Lp boundedness of commutators of Riesz transforms associated to Schrodinger operator [J].
Guo, Zihua ;
Li, Pengtao ;
Peng, Lizhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :421-432
[8]   MEAN OSCILLATION AND COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS [J].
JANSON, S .
ARKIV FOR MATEMATIK, 1978, 16 (02) :263-270
[9]   Some estimates for commutators of Riesz transforms associated with Schrodinger operators [J].
Liu, Yu ;
Sheng, Jielai .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) :298-328
[10]   Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications [J].
Martell, JM .
STUDIA MATHEMATICA, 2004, 161 (02) :113-145