Could SARS-CoV-2 blocking of ACE2 in endothelial cells result in upregulation of CX3CL1, promoting thrombosis in COVID-19 patients?

被引:14
作者
Rivas-Fuentes, Selma [1 ]
Julian Valdes, Victor [2 ]
Espinosa, Blanca [1 ]
Gorocica-Rosete, Patricia [1 ]
Salgado-Aguayo, Alfonso [3 ]
机构
[1] Inst Nacl Enfermedades Resp Ismael Cosio Villegas, Dept Res Biochem, Calzada Tlalpan 4502, Mexico City 14080, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Dept Biol Celular & Desarrollo, Mexico City, DF, Mexico
[3] Inst Nacl Enfermedades Resp Ismael Cosio Villegas, Lab Res Rheumat Dis, Mexico City, DF, Mexico
关键词
CX3CL1; COVID-19; Thrombosis; MEMBRANE-BOUND CHEMOKINE; PLATELET ACTIVATION; FRACTALKINE; EXPRESSION; RECEPTOR; PROTEIN; ATHEROSCLEROSIS; INHIBITION; MOLECULES; DISEASE;
D O I
10.1016/j.mehy.2021.110570
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
SARS-CoV-2 is the causal agent of COVID-19 disease. Currently, infection with SARS-CoV-2 has been the cause of death of over 2.5 million people globally, and there is still no effective curative treatment. Clinically, the severe symptoms caused by COVID-19, in addition to pneumonia, are associated with the development of hyperinflammatory syndrome and thrombosis. It is urgent to expand our understanding of the molecular mechanisms involved in the pathophysiology of COVID-19. This article discusses the potential role that the chemokine CX3CL1 could have in the development of COVID-19-associated thrombosis. CX3CL1 is abundantly expressed by activated endothelium and is an important regulator of many aspects of endothelial function and dysfunction, including thrombosis. The generation of hypotheses about molecules that could be relevant in well-defined aspects of the pathophysiology of COVID-19 encourages the development of basic and clinical studies, that could help find effective and much needed treatments.
引用
收藏
页数:4
相关论文
共 40 条
[1]   Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19 [J].
Ackermann, Maximilian ;
Verleden, Stijn E. ;
Kuehnel, Mark ;
Haverich, Axel ;
Welte, Tobias ;
Laenger, Florian ;
Vanstapel, Arno ;
Werlein, Christopher ;
Stark, Helge ;
Tzankov, Alexandar ;
Li, William W. ;
Li, Vincent W. ;
Mentzer, Steven J. ;
Jonigk, Danny .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (02) :120-128
[2]   Tumor necrosis factor-α induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-α-induced fractalkine expression [J].
Ahn, SY ;
Cho, CH ;
Park, KY ;
Lee, HJ ;
Lee, S ;
Park, SK ;
Lee, IK ;
Koh, GY .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (05) :1663-1672
[3]   A new class of membrane-bound chemokine with a CX(3)C motif [J].
Bazan, JF ;
Bacon, KB ;
Hardiman, G ;
Wang, W ;
Soo, K ;
Rossi, D ;
Greaves, DR ;
Zlotnik, A ;
Schall, TJ .
NATURE, 1997, 385 (6617) :640-644
[4]   COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow [J].
Bikdeli, Behnood ;
Madhavan, Mahesh V. ;
Jimenez, David ;
Chuich, Taylor ;
Dreyfus, Isaac ;
Driggin, Elissa ;
Der Nigoghossian, Caroline ;
Ageno, Walter ;
Madjid, Mohammad ;
Guo, Yutao ;
Tang, Liang V. ;
Hu, Yu ;
Giri, Jay ;
Cushman, Mary ;
Quere, Isabelle ;
Dimakakos, Evangelos P. ;
Gibson, C. Michael ;
Lippi, Giuseppe ;
Favaloro, Emmanuel J. ;
Fareed, Jawed ;
Caprini, Joseph A. ;
Tafur, Alfonso J. ;
Burton, John R. ;
Francese, Dominic P. ;
Wang, Elizabeth Y. ;
Falanga, Anna ;
McLintock, Claire ;
Hunt, Beverley J. ;
Spyropoulos, Alex C. ;
Barnes, Geoffrey D. ;
Eikelboom, John W. ;
Weinberg, Ido ;
Schulman, Sam ;
Carrier, Marc ;
Piazza, Gregory ;
Beckman, Joshua A. ;
Steg, Gabriel ;
Stone, Gregg W. ;
Rosenkranz, Stephan ;
Goldhaber, Samuel Z. ;
Parikh, Sahil A. ;
Monreal, Manuel ;
Krumholz, Harlan M. ;
Konstantinides, Stavros V. ;
Weitz, Jeffrey I. ;
Lip, Gregory Y. H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (23) :2950-2973
[5]   Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [J].
Blanco-Melo, Daniel ;
Nilsson-Payant, Benjamin E. ;
Liu, Wen-Chun ;
Uhl, Skyler ;
Hoagland, Daisy ;
Moller, Rasmus ;
Jordan, Tristan X. ;
Oishi, Kohei ;
Panis, Maryline ;
Sachs, David ;
Wang, Taia T. ;
Schwartz, Robert E. ;
Lim, Jean K. ;
Albrecht, Randy A. ;
tenOever, Benjamin R. .
CELL, 2020, 181 (05) :1036-+
[6]   SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy [J].
Datta, Prasun K. ;
Liu, Fengming ;
Fischer, Tracy ;
Rappaport, Jay ;
Qin, Xuebin .
THERANOSTICS, 2020, 10 (16) :7448-7464
[7]   Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor Therapeutic Implications [J].
Davidson, Anne M. ;
Wysocki, Jan ;
Batlle, Daniel .
HYPERTENSION, 2020, 76 (05) :1339-1349
[8]   Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63 [J].
Dijkman, Ronald ;
Jebbink, Maarten F. ;
Deijs, Martin ;
Milewska, Aleksandra ;
Pyrc, Krzysztof ;
Buelow, Elena ;
van der Bijl, Anna ;
van der Hoek, Lia .
JOURNAL OF GENERAL VIROLOGY, 2012, 93 :1924-1929
[9]   The spike protein of SARS-CoV - a target for vaccine and therapeutic development [J].
Du, Lanying ;
He, Yuxian ;
Zhou, Yusen ;
Liu, Shuwen ;
Zheng, Bo-Jian ;
Jiang, Shibo .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (03) :226-236
[10]   Modulation of platelet and monocyte function by the chemokine fractalkine (CX3CL1) in cardiovascular disease [J].
Flierl, Ulrike ;
Bauersachs, Johann ;
Schaefer, Andreas .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2015, 45 (06) :624-633