Estimates for quasiconformal mappings onto canonical domains (II)

被引:0
作者
Thao, VD [1 ]
机构
[1] Univ Ho Chi Minh City, Dept Math, Ho Chi Minh City, Vietnam
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2002年 / 21卷 / 04期
关键词
K-quasiconformal mappings; Riemann moduli of a multiply-connected domain;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish estimates for normal K-quasiconformal mappings z = g(w) of any finitely-connected domain in the extended w-plane onto the interior or exterior of the unit circle or the extended z-plane with n (greater than or equal to 0) slits on the circles \z\ = R-j (j = 1,...,n). The bounds in the estimates for R-j,\g(w)\, etc. are explicitly given. They are sharp or asymptotically sharp and deduced mainly from estimates for the inverse mappings of g in our previous paper [10] based on Carleman's and Grotzsch's inequalities and partly improved here. A generalization of the Schwarz lemma and improvements of some classical inequalities for conformal mappings are shown.
引用
收藏
页码:1043 / 1054
页数:12
相关论文
共 11 条
  • [1] [Anonymous], 1928, BER VERH SACHS AK MP
  • [2] [Anonymous], 1965, QUASIKONFORME ABBILD
  • [3] On a minimum problem in mathematical physics
    Carleman, T
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1918, 1 : 208 - 212
  • [4] HERSCH J, 1952, CR HEBD ACAD SCI, V234, P43
  • [5] Nehari Z., 1952, Conformal Mappings
  • [6] Thao V. D., 1991, REV ROUM MATH PURE A, V36, P521
  • [7] THAO VD, 1976, MATH NACHR, V74, P253
  • [8] THAO VD, 1976, MATH NACHR, V74, P99
  • [9] THAO VD, 1993, REV ROUM MATH PURE A, V38, P369
  • [10] THAO VD, 1993, REV ROUM MATH PURE A, V38, P55