Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K

被引:129
作者
Bardin, Joseph C. [1 ,2 ]
Jeffrey, Evan [2 ]
Lucero, Erik [2 ]
Huang, Trent [2 ]
Das, Sayan [1 ]
Sank, Daniel Thomas [2 ]
Naaman, Ofer [2 ]
Megrant, Anthony Edward [2 ]
Barends, Rami [2 ]
White, Ted [2 ]
Giustina, Marissa [2 ]
Satzinger, Kevin J. [2 ]
Arya, Kunal [2 ]
Roushan, Pedram [2 ]
Chiaro, Benjamin [3 ]
Kelly, Julian [2 ]
Chen, Zijun [2 ]
Burkett, Brian [2 ]
Chen, Yu [2 ]
Dunsworth, Andrew [2 ]
Fowler, Austin [2 ]
Foxen, Brooks [3 ]
Gidney, Craig [2 ]
Graff, Rob [2 ]
Klimov, Paul [2 ]
Mutus, Josh [2 ]
McEwen, Matthew J. [3 ]
Neeley, Matthew [2 ]
Neill, Charles J. [2 ]
Quintana, Chris [2 ]
Vainsencher, Amit [2 ]
Neven, Hartmut [2 ]
Martinis, John [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Google Inc, Goleta, CA 93117 USA
[3] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
Qubit; Cryogenics; Control systems; Josephson junctions; Process control; Logic gates; Cryogenic electronics; pulse modulator; quantum computing; quantum control; radio frequency integrated circuits; CIRCUITS;
D O I
10.1109/JSSC.2019.2937234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Implementation of an error-corrected quantum computer is believed to require a quantum processor with a million or more physical qubits, and, in order to run such a processor, a quantum control system of similar scale will be required. Such a controller will need to be integrated within the cryogenic system and in close proximity with the quantum processor in order to make such a system practical. Here, we present a prototype cryogenic CMOS quantum controller designed in a 28-nm bulk CMOS process and optimized to implement a 16-word (4-bit) XY gate instruction set for controlling transmon qubits. After introducing the transmon qubit, including a discussion of how it is controlled, design considerations are discussed, with an emphasis on error rates and scalability. The circuit design is then discussed. Cryogenic performance of the underlying technology is presented, and the results of several quantum control experiments carried out using the integrated controller are described. This article ends with a comparison to the state of the art and a discussion of further research to be carried out. It has been shown that the quantum control IC achieves promising performance while dissipating less than 2 mW of total ac and dc power and requiring a digital data stream of less than 500 Mb/s.
引用
收藏
页码:3043 / 3060
页数:18
相关论文
共 50 条
[31]   Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking [J].
Magesan, Easwar ;
Gambetta, Jay M. ;
Johnson, B. R. ;
Ryan, Colm A. ;
Chow, Jerry M. ;
Merkel, Seth T. ;
da Silva, Marcus P. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Ohki, Thomas A. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[32]   Coupling superconducting qubits via a cavity bus [J].
Majer, J. ;
Chow, J. M. ;
Gambetta, J. M. ;
Koch, Jens ;
Johnson, B. R. ;
Schreier, J. A. ;
Frunzio, L. ;
Schuster, D. I. ;
Houck, A. A. ;
Wallraff, A. ;
Blais, A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 449 (7161) :443-447
[33]   Fast adiabatic qubit gates using only σz control [J].
Martinis, John M. ;
Geller, Michael R. .
PHYSICAL REVIEW A, 2014, 90 (02)
[34]   Quantum-classical interface based on single flux quantum digital logic [J].
McDermott, R. ;
Vavilov, M. G. ;
Plourde, B. L. T. ;
Wilhelm, F. K. ;
Liebermann, P. J. ;
Mukhanov, O. A. ;
Ohki, T. A. .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (02)
[35]   Efficient Z gates for quantum computing [J].
Mckay, David C. ;
Wood, Christopher J. ;
Sheldon, Sarah ;
Chow, Jerry M. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2017, 96 (02)
[36]  
Mehrpoo M., 2019, 2019 IEEE INT S CIRC, P1, DOI [10.1109, 10.1109/ISCAS.2019.8702452, DOI 10.1109/ISCAS.2019.8702452]
[37]   Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits [J].
Motzoi, F. ;
Gambetta, J. M. ;
Rebentrost, P. ;
Wilhelm, F. K. .
PHYSICAL REVIEW LETTERS, 2009, 103 (11)
[38]   Measurement of a superconducting qubit with a microwave photon counter [J].
Opremcak, A. ;
Pechenezhskiy, I. V. ;
Howington, C. ;
Christensen, B. G. ;
Beck, M. A. ;
Leonard, E., Jr. ;
Suttle, J. ;
Wilen, C. ;
Nesterov, K. N. ;
Ribeill, G. J. ;
Thorbeck, T. ;
Schlenker, F. ;
Vavilov, M. G. ;
Plourde, B. L. T. ;
McDermott, R. .
SCIENCE, 2018, 361 (6408) :1239-+
[39]  
Oxford Instruments Abingdon U.K, TRIT XL PROD BROCH
[40]   Cryo-CMOS Circuits and Systems for Quantum Computing Applications [J].
Patra, Bishnu ;
Incandela, Rosario M. ;
van Dijk, Jeroen P. G. ;
Homulle, Harald A. R. ;
Song, Lin ;
Shahmohammadi, Mina ;
Staszewski, Robert Bogdan ;
Vladimirescu, Andrei ;
Babaie, Masoud ;
Sebastiano, Fabio ;
Charbon, Edoardo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (01) :309-321