Updating Latent Class Imputations with External Auxiliary Variables

被引:5
作者
Boeschoten, Laura [1 ,2 ]
Oberski, Daniel L. [3 ]
De Waal, Ton [1 ,2 ]
Vermunt, Jeroen K. [1 ]
机构
[1] Tilburg Univ, Tilburg, Netherlands
[2] Stat Netherlands, The Hague, Netherlands
[3] Univ Utrecht, Utrecht, Netherlands
关键词
Latent class analysis; misclassification; multiple imputation; three-step approach; MULTIPLE-IMPUTATION; INFERENCE;
D O I
10.1080/10705511.2018.1446834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Latent class models are often used to assign values to categorical variables that cannot be measured directly. This "imputed" latent variable is then used in further analyses with auxiliary variables. The relationship between the imputed latent variable and auxiliary variables can only be correctly estimated if these auxiliary variables are included in the latent class model. Otherwise, point estimates will be biased. We develop a method that correctly estimates the relationship between an imputed latent variable and external auxiliary variables, by updating the latent variable imputations to be conditional on the external auxiliary variables using a combination of multiple imputation of latent classes and the so-called three-step approach. In contrast with existing "one-step" and "three-step" approaches, our method allows the resulting imputations to be analyzed using the familiar methods favored by substantive researchers.
引用
收藏
页码:750 / 761
页数:12
相关论文
共 32 条
  • [1] [Anonymous], SOCIOLOGICAL METHODS
  • [2] Bakk Z., 2015, THESIS
  • [3] ESTIMATING THE ASSOCIATION BETWEEN LATENT CLASS MEMBERSHIP AND EXTERNAL VARIABLES USING BIAS-ADJUSTED THREE-STEP APPROACHES
    Bakk, Zsuzsa
    Tekle, Fetene B.
    Vermunt, Jeroen K.
    [J]. SOCIOLOGICAL METHODOLOGY 2013, VOL 43, 2013, 43 : 272 - 311
  • [4] Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
    Bartlett, Jonathan W.
    Seaman, Shaun R.
    White, Ian R.
    Carpenter, James R.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (04) : 462 - 487
  • [5] Biemer P. P., 2011, LATENT CLASS ANAL SU, V571
  • [6] Boeschoten L., 2017, NOTE APPL BCH METHOD
  • [7] Estimating Classification Errors Under Edit Restrictions in Composite Survey-Register Data Using Multiple Imputation Latent Class Modelling (MILC)
    Boeschoten, Laura
    Oberski, Daniel
    de Waal, Ton
    [J]. JOURNAL OF OFFICIAL STATISTICS, 2017, 33 (04) : 921 - 962
  • [8] Estimating latent structure models with categorical variables: One-step versus three-step estimators
    Bolck, A
    Croon, M
    Hagenaars, J
    [J]. POLITICAL ANALYSIS, 2004, 12 (01) : 3 - 27
  • [9] Multiple-imputation for measurement-error correction
    Cole, Stephen R.
    Chu, Haitao
    Greenland, Sander
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2006, 35 (04) : 1074 - 1081
  • [10] SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS
    COOK, JR
    STEFANSKI, LA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) : 1314 - 1328