Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application

被引:28
|
作者
Shen, Hongyang [1 ]
Liu, Chunyang [1 ]
Liu, Fengxiang [1 ]
Jin, Yaqi [1 ]
Guo, Banghong [1 ]
Wei, Zhongchao [1 ]
Wang, Faqiang [1 ]
Tan, Chunhua [1 ]
Huang, Xuguang [1 ]
Meng, Hongyun [1 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Sch Informat & Optoelect Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Metasurface; Refractive index sensor; Absorber; PERFECT METAMATERIAL ABSORBER; SILVER NANOPARTICLES; RESONANCE; SENSOR;
D O I
10.1016/j.rinp.2021.104020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A multi-band absorber based on a hybrid metal-graphene metasurface, which is also suitable for detecting surrounding refractive index, is proposed and studied by numerical simulation. The structure combines a metal disc with a graphene plasmon, which greatly enhances the coupling of light and graphene, and realizes multiband resonance absorption. The simulated results show that three absorption peaks at 23.5 mu m, 24.3 mu m and 27.8 mu m with the maximal absorption of 96.4%, 99.4% and 99.9% have been achieved, respectively. At the same time, under normal incidence, the absorber is not restricted by the polarization angle of the incident light source. Moreover, the light source can be incident obliquely under two polarization conditions, and the absorber of this structure maintains approximately stable absorption within the range of oblique incident 50 degrees. The dynamic adjustment of the absorption peak can be achieved by flexibly changing the Fermi level of graphene. Furthermore, the absorber we proposed can also be used as a refractive index sensor to detect the surrounding refractive index. The sensitivities are 3.98 mu m/RIU, 4.13 mu m/RIU and 5.06 mu m/RIU, and the maximum figure of merit (FOM) is 16.6, 20.7 and 18.1, respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure
    Ning, Renxia
    Jiao, Zheng
    Bao, Jie
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2017, 79 (01)
  • [22] Graphene metasurface based broad band absorber for terahertz sensing applications
    Nagandla P.
    Pokkunuri P.
    Madhav B.T.P.
    Measurement: Sensors, 2023, 30
  • [23] Quad-band Graphene-Based Terahertz Metamaterial Perfect Absorber for Refractive Index Sensing
    Shruti
    Appasani, Bhargav
    Pahadsingh, Sasmita
    PLASMONICS, 2022, 17 (06) : 2323 - 2336
  • [24] Polarization-independent multi-band Terahertz metamaterial perfect absorber based on graphene and metal
    Zishan Yang
    Anqi Li
    Feng Huang
    Zhaoyang Chen
    Optical and Quantum Electronics, 57 (1)
  • [25] Ultra-wideband terahertz absorber based on metal-graphene hybrid structure
    Liu, Xiao
    Chen, Zhihui
    Feng, Guang
    Song, Jiantong
    Liu, Yinshan
    Tian, Dongliang
    Sun, Fei
    Liu, Yichao
    Fei, Hongming
    Yang, Yibiao
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [26] Quad-band Graphene-Based Terahertz Metamaterial Perfect Absorber for Refractive Index Sensing
    Bhargav Shruti
    Sasmita Appasani
    Plasmonics, 2022, 17 : 2323 - 2336
  • [28] Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption
    Song, Yingming
    Deng, Xin-Hua
    Zhang, Pingsheng
    Guo, Fumin
    Qin, Kaipeng
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (07) : 4049 - 4058
  • [29] Graphene-Based Metamaterial Absorber with Perfect Multi-band Absorption
    Song, Yingming
    Deng, Xin-Hua
    Zhang, Pingsheng
    Guo, Fumin
    Qin, Kaipeng
    JOURNAL OF ELECTRONIC MATERIALS, 2024,
  • [30] Multi-band graphene-based Terahertz Anisotropic Metamaterial Absorber
    Asgari, Somayyeh
    Fabritius, Tapio
    2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,