Training algorithms for hidden conditional random fields

被引:0
作者
Mahajan, Milind [1 ]
Gunawardana, Asela [1 ]
Acero, Alex [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
来源
2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13 | 2006年
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We investigate algorithms for training hidden conditional random fields (HCRFs) - a class of direct models with hidden state sequences. We compare stochastic gradient ascent with the RProp algorithm, and investigate stochastic versions of RProp. We propose a new scheme for model flattening, and compare it to the state of the art. Finally we give experimental results on the TEWT phone classification task showing how these training options interact, comparing HCRFs to HMMs trained using extended Baum-Welch as well as stochastic gradient methods.
引用
收藏
页码:273 / 276
页数:4
相关论文
共 13 条
[1]  
[Anonymous], THESIS CAMBRIDGE U
[2]  
[Anonymous], INT C NEUR NETW SAN
[3]  
Chou W., 1992, ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech and Signal Processing (Cat. No.92CH3103-9), P473, DOI 10.1109/ICASSP.1992.225869
[4]  
GUNAWARDANA A, 2005, INTERSPEECH
[5]  
Halberstadt A. K., 1997, EUROSPEECH, P401
[6]  
Kushner H. J., 1997, STOCHASTIC APPROXIMA
[7]  
Lafferty J., 2001, PROC 18 INT C MACHIN, DOI [10.1038/nprot.2006.61, DOI 10.1038/NPROT.2006.61]
[8]  
Nocedal J., 1999, Numerical optimization
[9]  
QUATTRONI A, 2004, NIPS
[10]   STATISTICAL-MECHANICS AND PHASE-TRANSITIONS IN CLUSTERING [J].
ROSE, K ;
GUREWITZ, E ;
FOX, GC .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :945-948