AMI-Enabled Distribution Network Line Outage Identification via Multi-Label SVM

被引:38
作者
Hosseini, Zohreh S. [1 ]
Mahoor, Mohsen [1 ]
Khodaei, Amin [1 ]
机构
[1] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA
基金
美国国家科学基金会;
关键词
Multi-label SVM classifier; line outage identification; smart meter;
D O I
10.1109/TSG.2018.2849845
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes an effective data mining method for identifying distribution network line outages by leveraging data collected through Advanced Metering Infrastructure (AMI). The line outage identification method is developed based on a Multi-Label Support Vector Machine (ML-SVM) classification scheme that utilizes the status of customers' smart meters as input data and accordingly identifies the outage/operational status of distribution lines. The F-beta-score is proposed to validate the performance of the classifier through numerical simulations.
引用
收藏
页码:5470 / 5472
页数:3
相关论文
共 10 条
[1]  
Brown R. E., 2008, ELECT POWER DISTRIBU
[2]  
Campbell R. J., 2012, R42696 C RES SERV L
[3]   Economic costs of power interruptions: a consistent model and methodology [J].
Ghajar, RF ;
Billinton, R .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (01) :29-35
[4]   Outage Management of Distribution Systems Incorporating Information From Smart Meters [J].
Jiang, Yazhou ;
Liu, Chen-Ching ;
Diedesch, Michael ;
Lee, Erik ;
Srivastava, Anurag K. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) :4144-4154
[5]  
Liu CC, 2015, IEEE POWER ENERGY M, V13, P96, DOI 10.1109/MPE.2015.2397332
[6]  
Scholkopf B., 1998, Advances in Kernel Methods: Support Vector Learning
[7]   Fault Location in Distribution Systems Based on Smart Feeder Meters [J].
Trindade, Fernanda C. L. ;
Freitas, Walmir ;
Vieira, Jose C. M. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2014, 29 (01) :251-260
[8]  
Tsoumakas G., 2006, INT J DATA WAREHOUS, V3, P1
[9]  
Zhao Y, 2016, IEEE GLOB CONF SIG, P811, DOI 10.1109/GlobalSIP.2016.7905955
[10]  
Zhao Yue., 2016, Statistical Signal Processing Workshop (SSP), 2016 IEEE, P1, DOI DOI 10.1109/ITEC.2016.7520289