Modification of graphene photodetector by TiO2 prepared by oxygen plasma

被引:8
作者
Liu, Yawei [1 ,2 ]
Liu, Beiyun [3 ]
Wu, Yi [2 ]
Chen, Xiaoqing [2 ]
Chen, Aibing [1 ]
Chu, Feihong [2 ]
Feng, Shubo [1 ]
Zhao, Chen [2 ]
Yu, Hongwen [2 ]
机构
[1] Hebei Univ Sci & Technol, Coll Chem & Pharmaceut Engn, Shijiazhuang 050018, Hebei, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Sci, Liuzhou 545006, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1007/s10853-021-05971-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single-layer graphene has been proved to be an ideal material for broadband high-speed photodetector. However, the pure graphene photodetector photoresponsivity is limited to tens of mA /W by the low optical absorption and short exciton life of graphene. When higher responsivity is needed, the graphene layer needs to be coupled with other materials, e.g., Titanium Dioxide (TiO2). Conventional TiO2 recipes require either solution or high temperature which tends to destruct the graphene layer. In this work, TiO2 is synthesized by oxygen plasma treating Ti film. This novel synthesis route of TiO2 avoids defects introduced by the conventional recipes. The hybrid device shows a high photoresponsivity of similar to 179 A /W, a fast response time of similar to 20 ms and a specific detectivity of similar to 9.12 x 10 (9) Jones with the incident light intensity of sub-microwatt. Under the illumination, the photon absorption in graphene creates electron-hole pairs, which were separated at TiO2/graphene interface by an internal electric field and corresponding electrons transfer from the graphene to TiO2 layer. The high photoresponsivity is attributed to the long lifetime of the photoexcited charge carriers caused by a built-in field at the interface of TiO2/graphene. Our research provides an effective method to improve the photoresponse of the graphene-based photodetector. In addition, our TiO2 recipe could be applied in the fabrication of other electronic devices where solution or high temperature processes are difficult.
引用
收藏
页码:10938 / 10946
页数:9
相关论文
共 36 条
[1]   Gated graphene/titanium dioxide-based photodetector [J].
Afzali, Parvaneh ;
Abdi, Yaser ;
Arzi, Ezatollah .
JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (10)
[2]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[3]   Effect of substrate temperature on structural, morphological and optical properties of crystalline titanium dioxide films prepared by DC reactive magnetron sputtering [J].
Ananthakumar, R. ;
Subramanian, B. ;
Yugeswaran, S. ;
Jayachandran, M. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2012, 23 (10) :1898-1904
[4]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[5]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[6]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[7]   Microcavity-Integrated Graphene Photodetector [J].
Furchi, Marco ;
Urich, Alexander ;
Pospischil, Andreas ;
Lilley, Govinda ;
Unterrainer, Karl ;
Detz, Hermann ;
Klang, Pavel ;
Andrews, Aaron Maxwell ;
Schrenk, Werner ;
Strasser, Gottfried ;
Mueller, Thomas .
NANO LETTERS, 2012, 12 (06) :2773-2777
[8]   Hierarchical Graphene-Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader [J].
Kong, Qing-Qiang ;
Liu, Zhuo ;
Gao, Jian-Guo ;
Chen, Cheng-Meng ;
Zhang, Qiang ;
Zhou, Guangmin ;
Tao, Ze-Chao ;
Zhang, Xing-Hua ;
Wang, Mao-Zhang ;
Li, Feng ;
Cai, Rong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (27) :4222-4228
[9]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]
[10]  
Koppens FHL, 2014, NAT NANOTECHNOL, V9, P780, DOI [10.1038/nnano.2014.215, 10.1038/NNANO.2014.215]