STABILIZATION IN A CHEMOTAXIS MODEL FOR VIRUS INFECTION

被引:58
作者
Bellomo, Nicola [1 ,2 ]
Tao, Youshan [3 ]
机构
[1] Politecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Coll Carlo Alberto, Turin, Italy
[3] Donghua Univ, Dept Appl Math, Shanghai 200051, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2020年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
Virus infection model; chemotaxis; global existence; asymptotic stability; SUPERINFECTING VIRIONS; POPULATION-DYNAMICS; BOUNDEDNESS; REPULSION; DIFFUSION; SYSTEM;
D O I
10.3934/dcdss.2020006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a qualitative analysis of a model describing the time and space dynamics of a virus which migrates driven by chemotaxis. The initial-boundary value problem related to applications of the model to a real biological dynamics is studied in detail. The main result consists in the proof of global existence and asymptotic stability.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 38 条
[1]   NON-LINEAR PHENOMENA IN HOST-PARASITE INTERACTIONS [J].
ANDERSON, RM ;
MAY, RM ;
GUPTA, S .
PARASITOLOGY, 1989, 99 :S59-S79
[2]  
[Anonymous], 2006, Exploring the Equations of Life
[3]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[4]   From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid [J].
Bellomo, N. ;
Bellouquid, A. ;
Chouhad, N. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11) :2041-2069
[5]   A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up [J].
Bellomo, Nicola ;
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) :436-473
[6]   Virus dynamics and drug therapy [J].
Bonhoeffer, S ;
May, RM ;
Shaw, GM ;
Nowak, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (13) :6971-6976
[7]   Flux-saturated porous media equations and applications [J].
Calvo, J. ;
Campos, J. ;
Caselles, V. ;
Sanchez, O. ;
Soler, J. .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2015, 2 (01) :131-218
[8]   The effects of distributed life cycles on the dynamics of viral infections [J].
Campos, Daniel ;
Mendez, Vicenc ;
Fedotov, Sergei .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (02) :430-438
[9]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[10]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, VVolume 5