Cross-sectional human immunodeficiency virus incidence estimation accounting for heterogeneity across communities

被引:4
作者
Xu, Yuejia [1 ]
Laeyendecker, Oliver [2 ,3 ,4 ]
Wang, Rui [5 ,6 ,7 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Natl Inst Allergy & Infect Dis, Baltimore, MD USA
[3] Johns Hopkins Univ, Dept Med, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Epidemiol, Baltimore, MD USA
[5] Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA 02215 USA
[6] Harvard Med Sch, Boston, MA 02115 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
biomarkers; coefficient of variation; permutation test; random-effects model; HIV INCIDENCE; UNITED-STATES; RATES;
D O I
10.1111/biom.13046
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate estimation of human immunodeficiency virus (HIV) incidence rates is crucial for the monitoring of HIV epidemics, the evaluation of prevention programs, and the design of prevention studies. Traditional cohort approaches to measure HIV incidence require repeatedly testing large cohorts of HIV-uninfected individuals with an HIV diagnostic test (eg, enzyme-linked immunosorbent assay) for long periods of time to identify new infections, which can be prohibitively costly, time-consuming, and subject to loss to followup. Cross-sectional approaches based on the usual HIV diagnostic test and biomarkers of recent infection offer important advantages over standard cohort approaches, in terms of time, cost, and attrition. Cross-sectional samples usually consist of individuals from different communities. However, small sample sizes limit the ability to estimate community-specific incidence and existing methods typically ignore heterogeneity in incidence across communities. We propose a permutation test for the null hypothesis of no heterogeneity in incidence rates across communities, develop a random-effects model to account for this heterogeneity and to estimate community-specific incidence, and provide one way to estimate the coefficient of variation. We evaluate the performance of the proposed methods through simulation studies and apply them to the data from the National Institute of Mental Health Project ACCEPT, a phase 3 randomized controlled HIV prevention trial in Sub-Saharan Africa, to estimate the overall and community-specific HIV incidence rates.
引用
收藏
页码:1017 / 1028
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2004, Multiple Linear Regression Viewpoints
[2]  
[Anonymous], 2015, SASSTAT 141 USERS GU, P5857
[3]   Estimating HIV Incidence Based on Combined Prevalence Testing [J].
Balasubramanian, Raji ;
Lagakos, Stephen W. .
BIOMETRICS, 2010, 66 (01) :1-10
[4]   ESTIMATION OF CURRENT HUMAN-IMMUNODEFICIENCY-VIRUS INCIDENCE RATES FROM A CROSS-SECTIONAL SURVEY USING EARLY DIAGNOSTIC-TESTS [J].
BROOKMEYER, R ;
QUINN, TC .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 141 (02) :166-172
[5]  
Brookmeyer R, 2013, JAIDS-J ACQ IMM DEF, V63, pS233, DOI 10.1097/QAI.0b013e3182986fdf
[6]   Estimation of HIV Incidence Using Multiple Biomarkers [J].
Brookmeyer, Ron ;
Konikoff, Jacob ;
Laeyendecker, Oliver ;
Eshleman, Susan H. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (03) :264-272
[7]   Augmented Cross-Sectional Studies with Abbreviated Follow-up for Estimating HIV Incidence [J].
Claggett, B. ;
Lagakos, S. W. ;
Wang, R. .
BIOMETRICS, 2012, 68 (01) :62-74
[8]   Effect of community-based voluntary counselling and testing on HIV incidence and social and behavioural outcomes (NIMH Project Accept; HPTN 043): a cluster-randomised trial [J].
Coates, Thomas J. ;
Kulich, Michal ;
Celentano, David D. ;
Zelaya, Carla E. ;
Chariyalertsak, Suwat ;
Chingono, Alfred ;
Gray, Glenda ;
Mbwambo, Jessie K. K. ;
Morin, Stephen F. ;
Richter, Linda ;
Sweat, Michael ;
van Rooyen, Heidi ;
McGrath, Nuala ;
Fiamma, Agnes ;
Laeyendecker, Oliver ;
Piwowar-Manning, Estelle ;
Szekeres, Greg ;
Donnell, Deborah ;
Eshleman, Susan H. .
LANCET GLOBAL HEALTH, 2014, 2 (05) :E267-E277
[9]  
Davison A.C., 1997, BOOTSTRAP METHODS TH
[10]   Use of a Multifaceted Approach to Analyze HIV Incidence in a Cohort Study of Women in the United States: HIV Prevention Trials Network 064 Study [J].
Eshleman, Susan H. ;
Hughes, James P. ;
Laeyendecker, Oliver ;
Wang, Jing ;
Brookmeyer, Ron ;
Johnson-Lewis, LeTanya ;
Mullis, Caroline E. ;
Hackett, John, Jr. ;
Vallari, Ana S. ;
Justman, Jessica ;
Hodder, Sally .
JOURNAL OF INFECTIOUS DISEASES, 2013, 207 (02) :223-231