Generation and Extraction of Color Palettes with Adversarial Variational Auto-Encoders

被引:3
作者
Moussa, Ahmad [1 ]
Watanabe, Hiroshi [1 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Tokyo, Japan
来源
PROCEEDINGS OF SIXTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICICT 2021), VOL 2 | 2022年 / 236卷
关键词
Variational auto-encoder; Color palettes; Generative adversarial networks;
D O I
10.1007/978-981-16-2380-6_78
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The process of creating a meaningful and perceptually pleasing color palette is an incredibly difficult task for the inexperienced practitioner. In this paper we show that the Variational Auto Encoder can be a powerful creative tool for the generation of novel color palettes as well as their extraction from visual mediums. Our proposed model is capable of extracting meaningful color palettes from images, and simultaneously learns an internal representation which allows for the sampling of novel color palettes without any additional input.
引用
收藏
页码:889 / 897
页数:9
相关论文
共 14 条
[1]   Coloring with Words: Guiding Image Colorization Through Text-Based Palette Generation [J].
Bahng, Hyojin ;
Yoo, Seungjoo ;
Cho, Wonwoong ;
Park, David Keetae ;
Wu, Ziming ;
Ma, Xiaojuan ;
Choo, Jaegul .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :443-459
[2]  
Bloomberg D, 2008, LEPTONICA COLOR QUAN
[3]   PaletteNet: Image Recolorization with Given Color Palette [J].
Cho, Junho ;
Yun, Sangdoo ;
Lee, Kyoungmu ;
Choi, Jin Young .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1058-1066
[4]  
Chung J, 2014, ARXIV
[5]  
Gervautz Michael, 1988, NEW TRENDS COMPUTER, P219, DOI DOI 10.1007/978-3-642-83492-9_20
[6]  
Goodfellow I.J., 2020, ADV NEUR IN, V63, P139, DOI DOI 10.1145/3422622
[7]  
Gowda SN, 2019, ARXIV190200267
[8]  
Heckbert P., 1982, Computer Graphics, V16, P297, DOI 10.1145/965145.801294
[9]  
Heusel M, 2018, EQUILIBRIUM, V1706
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]