Periodic Solutions and Hydra Effect for Delay Differential Equations with Nonincreasing Feedback

被引:6
作者
Krisztin, Tibor [1 ]
Polner, Monika [2 ]
Vas, Gabriella [1 ]
机构
[1] Univ Szeged, Bolyai Inst, MTA SZTE Anal & Stochast Res Grp, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
匈牙利科学研究基金会;
关键词
Delay differential equation; Periodic solution; Mean value; Hydra effect; Nonincreasing feedback; POPULATION; MORTALITY; DYNAMICS; BUBBLES; MODELS; PREY;
D O I
10.1007/s12346-016-0191-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a delay differential equation modeling production and destruction, and prove the presence of the paradoxial hydra effect. Namely, for the equation. y(t) = -mu y(t) + f (y(t - 1)) with mu > 0 and nonincreasing f : R -> (0,infinity), it is shown that the mean value of certain solutions can be increased by increasing the value of the (destruction) parameter mu. The nonlinearity f in the equation is a step function or a smooth function close to a step function. This particular form of f allows us to construct periodic solutions, and to evaluate the mean values of the periodic solutions. Our result explains how the global form of the nonlinearity f (the production term) induces the appearance of the hydra effect.
引用
收藏
页码:269 / 292
页数:24
相关论文
共 21 条