Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory

被引:11
作者
Jin, Zhizhan [1 ,2 ,3 ]
Li, Zhipeng [4 ]
Cheng, Rongjun [1 ,2 ,3 ]
Ge, Hongxia [1 ,2 ,3 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Zhejiang, Peoples R China
[2] Jiangsu Prov Collaborat Innovat Ctr Modern Urban, Nanjing 210096, Jiangsu, Peoples R China
[3] Ningbo Univ, Natl Traff Management Engn & Technol, Subctr, Ningbo 315211, Zhejiang, Peoples R China
[4] Tongji Univ, Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow; Energy consumption; Memory; TDGL equation; mKdV equation; TRAFFIC FLOW; DIFFERENCE MODEL; JAMMING TRANSITION; FEEDBACK-CONTROL; LATTICE MODEL; VEHICLES; BEHAVIOR; IMPACTS; COST;
D O I
10.1016/j.physa.2018.05.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, an extended car-following model is developed basing on the full velocity difference model (FVDM) to investigate the effect of the optimal velocity changes with memory on traffic flow. The stability conditions of the improved model are obtained through linear stability analysis. Then the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are derived by using nonlinear analysis. The kink-antikink soliton can describe the traffic jams near the critical point. Moreover, the evolution of traffic jam and corresponding the change of energy consumption are discussed. Numerical simulations show that the extended model is found not only to enhance the stability of traffic flow but also to depress the energy consumption. The numerical results are in good agreement with the theoretical analysis. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 50 条
[41]   A new car-following model considering velocity anticipation [J].
田钧方 ;
贾斌 ;
李新刚 ;
高自友 .
Chinese Physics B, 2010, (01) :197-203
[42]   Improved coupled map car-following model considering partial car-to-car communication and its jam analysis [J].
Shi, Y. F. ;
Yang, L. C. .
CANADIAN JOURNAL OF PHYSICS, 2017, 95 (11) :1096-1102
[43]   Development and Performance of a Connected Car-Following Model [J].
Wang, Wenxuan ;
Yao, Xinpeng ;
Yan, Ying ;
Wu, Bing ;
Wang, Zijian ;
Zhang, Han .
JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (09)
[44]   Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model [J].
Yang, Da ;
Jin, Peter ;
Pu, Yun ;
Ran, Bin .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 395 :371-383
[45]   Multiple Information Feedback Control Scheme for an Improved Car-Following Model [J].
Zheng, Ya-zhou ;
Cheng, Rong-jun ;
Ge, Hong-Xia .
ASIAN JOURNAL OF CONTROL, 2017, 19 (01) :215-223
[46]   A New Car Following Model: Comprehensive Optimal Velocity Model [J].
Tian Jun-Fang ;
Jia Bin ;
Li Xing-Gang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) :1119-1126
[47]   A new car-following model: full velocity and acceleration difference model [J].
X. Zhao ;
Z. Gao .
The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 47 :145-150
[48]   Traffic stability of a car-following model considering driver's desired velocity [J].
Zhang, Geng ;
Sun, Di-Hua ;
Liu, Wei-Ning ;
Liu, Hui .
MODERN PHYSICS LETTERS B, 2015, 29 (19)
[49]   Full velocity difference and acceleration model for a car-following theory [J].
Yu, Shaowei ;
Liu, Qingling ;
Li, Xiuhai .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) :1229-1234
[50]   A velocity-difference-separation model for car-following theory [J].
Li Zhi-Peng ;
Liu Yun-Cai .
CHINESE PHYSICS, 2006, 15 (07) :1570-1576