Classification of fluorescence in situ hybridization images using belief networks

被引:16
作者
Malka, R [1 ]
Lerner, B [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, Pattern Anal & Machine Learning Lab, IL-84105 Beer Sheva, Israel
关键词
belief networks; fluorescence in situ hybridization (FISH); image classification; naive Bayesian classifier; K2; algorithm;
D O I
10.1016/j.patrec.2004.07.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The structure and parameters of a belief network are learned in order to classify images enabling the detection of genetic abnormalities. We compare a structure learned from the data to another structure obtained utilizing expert knowledge and to the naive Bayesian classifier and study quantization in comparison to density estimation in parameter learning. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1777 / 1785
页数:9
相关论文
共 17 条
  • [1] [Anonymous], COMPUT SCI STAT
  • [2] Cheng J, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P101
  • [3] COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1007/BF00994110
  • [4] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [5] Hart, 2006, PATTERN CLASSIFICATI
  • [6] Heckerman D., 1995, MSRTR9506
  • [7] Inference in belief networks: A procedural guide
    Huang, C
    Darwiche, A
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1996, 15 (03) : 225 - 263
  • [8] Representing the behaviour of supervised classification learning algorithms by Bayesian networks
    Inza, I
    Larrañaga, P
    Sierra, B
    Etxeberria, R
    Lozano, J
    Peña, JM
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1201 - 1209
  • [9] Jensen FV, 2007, Bayesian Networks and Decision Graphs, V2
  • [10] LANGAN L, 1992, J EXPOSURE ANAL EN S, V1, P223