Numerical studies of a one-dimensional three-spin spin-glass model with long-range interactions

被引:31
作者
Larson, Derek [1 ]
Katzgraber, Helmut G. [2 ,3 ]
Moore, M. A. [4 ]
Young, A. P. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] ETH, CH-8093 Zurich, Switzerland
[3] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 06期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
CRITICAL EXPONENTS; CRITICAL-BEHAVIOR; FIELD-THEORY; MONTE-CARLO; ISING-MODEL; PHASE; SIMULATIONS; CONNECTIONS; TRANSITION; POTTS;
D O I
10.1103/PhysRevB.81.064415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a p-spin spin-glass model to understand if the finite-temperature glass transition found in the mean-field regime of p-spin models, and used to model the behavior of structural glasses, persists in the nonmean-field regime. By using a three-spin spin-glass model with long-range power-law diluted interactions we are able to continuously tune the (effective) space dimension via the exponent of the interactions. Monte Carlo simulations of the spin-glass susceptibility and the two-point finite-size correlation length show that deep in the nonmean-field regime, the finite-temperature transition is lost whereas this is not the case in the mean-field regime, in agreement with the prediction of Moore and Drossel [Phys. Rev. Lett. 89, 217202 (2002)] that three-spin models are in the same universality class as an Ising spin glass in a magnetic field. However, slightly in the nonmean-field region, we find an apparent transition in the three-spin model, in contrast to results for the Ising spin glass in a field. This may indicate that even larger sizes are needed to probe the asymptotic behavior in this region.
引用
收藏
页数:8
相关论文
共 37 条
  • [1] Amit D J., 2005, Field theory, the renormalization group, and critical phenomena: graphs to computers, V3rd edn
  • [2] Critical behavior of the three-dimensional Ising spin glass
    Ballesteros, HG
    Cruz, A
    Fernández, LA
    Martín-Mayor, V
    Pech, J
    Ruiz-Lorenzo, JJ
    Tarancón, A
    Téllez, P
    Ullod, CL
    Ungil, C
    [J]. PHYSICAL REVIEW B, 2000, 62 (21) : 14237 - 14245
  • [3] Finite size effects on measures of critical exponents in d=3 O(N) models
    Ballesteros, HG
    Fernandez, LA
    MartinMayor, V
    Sudupe, AM
    [J]. PHYSICS LETTERS B, 1996, 387 (01) : 125 - 131
  • [4] FINITE-SIZE TESTS OF HYPERSCALING
    BINDER, K
    NAUENBERG, M
    PRIVMAN, V
    YOUNG, AP
    [J]. PHYSICAL REVIEW B, 1985, 31 (03): : 1498 - 1502
  • [5] FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS
    BINDER, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02): : 119 - 140
  • [6] Influence of critical behavior on the spin-glass phase
    Bokil, H
    Drossel, B
    Moore, MA
    [J]. PHYSICAL REVIEW B, 2000, 62 (02) : 946 - 951
  • [7] BOUCHAUD J.-P., 1998, SPIN GLASSES RANDOM
  • [8] AN INVESTIGATION OF FINITE SIZE SCALING
    BREZIN, E
    [J]. JOURNAL DE PHYSIQUE, 1982, 43 (01): : 15 - 22
  • [9] FINITE SIZE EFFECTS IN PHASE-TRANSITIONS
    BREZIN, E
    ZINNJUSTIN, J
    [J]. NUCLEAR PHYSICS B, 1985, 257 (06) : 867 - 893
  • [10] Spin glass models with ferromagnetically biased couplings on the Bethe lattice: analytic solutions and numerical simulations
    Castellani, T
    Krzakala, F
    Ricci-Tersenghi, F
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2005, 47 (01) : 99 - 108