Numerical studies of a one-dimensional three-spin spin-glass model with long-range interactions

被引:31
作者
Larson, Derek [1 ]
Katzgraber, Helmut G. [2 ,3 ]
Moore, M. A. [4 ]
Young, A. P. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA
[2] ETH, CH-8093 Zurich, Switzerland
[3] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[4] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 06期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
CRITICAL EXPONENTS; CRITICAL-BEHAVIOR; FIELD-THEORY; MONTE-CARLO; ISING-MODEL; PHASE; SIMULATIONS; CONNECTIONS; TRANSITION; POTTS;
D O I
10.1103/PhysRevB.81.064415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a p-spin spin-glass model to understand if the finite-temperature glass transition found in the mean-field regime of p-spin models, and used to model the behavior of structural glasses, persists in the nonmean-field regime. By using a three-spin spin-glass model with long-range power-law diluted interactions we are able to continuously tune the (effective) space dimension via the exponent of the interactions. Monte Carlo simulations of the spin-glass susceptibility and the two-point finite-size correlation length show that deep in the nonmean-field regime, the finite-temperature transition is lost whereas this is not the case in the mean-field regime, in agreement with the prediction of Moore and Drossel [Phys. Rev. Lett. 89, 217202 (2002)] that three-spin models are in the same universality class as an Ising spin glass in a magnetic field. However, slightly in the nonmean-field region, we find an apparent transition in the three-spin model, in contrast to results for the Ising spin glass in a field. This may indicate that even larger sizes are needed to probe the asymptotic behavior in this region.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
Amit D J., 2005, Field theory, the renormalization group, and critical phenomena: graphs to computers, V3rd edn
[2]   Critical behavior of the three-dimensional Ising spin glass [J].
Ballesteros, HG ;
Cruz, A ;
Fernández, LA ;
Martín-Mayor, V ;
Pech, J ;
Ruiz-Lorenzo, JJ ;
Tarancón, A ;
Téllez, P ;
Ullod, CL ;
Ungil, C .
PHYSICAL REVIEW B, 2000, 62 (21) :14237-14245
[3]   Finite size effects on measures of critical exponents in d=3 O(N) models [J].
Ballesteros, HG ;
Fernandez, LA ;
MartinMayor, V ;
Sudupe, AM .
PHYSICS LETTERS B, 1996, 387 (01) :125-131
[4]   FINITE-SIZE TESTS OF HYPERSCALING [J].
BINDER, K ;
NAUENBERG, M ;
PRIVMAN, V ;
YOUNG, AP .
PHYSICAL REVIEW B, 1985, 31 (03) :1498-1502
[5]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[6]   Influence of critical behavior on the spin-glass phase [J].
Bokil, H ;
Drossel, B ;
Moore, MA .
PHYSICAL REVIEW B, 2000, 62 (02) :946-951
[7]  
BOUCHAUD J.-P., 1998, SPIN GLASSES RANDOM
[8]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[9]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[10]   Spin glass models with ferromagnetically biased couplings on the Bethe lattice: analytic solutions and numerical simulations [J].
Castellani, T ;
Krzakala, F ;
Ricci-Tersenghi, F .
EUROPEAN PHYSICAL JOURNAL B, 2005, 47 (01) :99-108