First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes

被引:48
作者
Qiao, L.
Zheng, W. T.
Bwen, Q.
Jiang, Q.
机构
[1] Jilin Univ, Dept Mat Sci, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] Jilin Univ, Key Lab Automobile Mat MOE, Changchun 130012, Peoples R China
关键词
D O I
10.1088/0957-4484/18/15/155707
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The geometrical structures and the field-emission properties of capped (5, 5) single-walled carbon nanotubes with water adsorbed on the tip with and without an applied electric field have been investigated using first-principles density-functional theory. It is found that the structures of carbon nanotubes with water molecules are stable under field-emission conditions. The dipole moments induced by the adsorption of water molecules point from the water molecules to the CNT tips. The Mulliken charges are redistributed and accumulated on the carbon nanotube tips. Under an applied electric field, the number of Mulliken charges that transfer from the carbon nanotube body to both its tip and water molecules increases with the increase of the number of water molecules. The local density of states at the Fermi level increases with the adsorption of water molecules. These results elucidate that the field-emission properties of carbon nanotubes can be enhanced by the adsorption of water molecules, and are consistent with the experimental results.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Theoretical study of field emission by single-wall carbon nanotubes [J].
Adessi, C ;
Devel, M .
PHYSICAL REVIEW B, 2000, 62 (20) :13314-13317
[2]   Field-emission-induced luminescence from carbon nanotubes [J].
Bonard, JM ;
Stockli, T ;
Maier, F ;
de Heer, WA ;
Chatelain, A ;
Salvetat, JP ;
Forro, L .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1441-1444
[3]   Electron field emission properties of closed carbon nanotubes [J].
Buldum, A ;
Lu, JP .
PHYSICAL REVIEW LETTERS, 2003, 91 (23)
[4]   Electronic structure and localized states at carbon nanotube tips [J].
Carroll, DL ;
Redlich, P ;
Ajayan, PM ;
Charlier, JC ;
Blase, X ;
DeVita, A ;
Car, R .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2811-2814
[5]   Carbon-nanotubes for full-color field-emission displays [J].
Choi, WB ;
Lee, YH ;
Lee, NS ;
Kang, JH ;
Park, SH ;
Kim, HY ;
Chung, DS ;
Lee, SM ;
Chung, SY ;
Kim, JM .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (5A) :2560-2564
[6]   Electronic structure at carbon nanotube tips [J].
De Vita, A ;
Charlier, JC ;
Blase, X ;
Car, R .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 68 (03) :283-286
[7]   Three behavioral states observed in field emission from single-walled carbon nanotubes [J].
Dean, KA ;
von Allmen, P ;
Chalamala, BR .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (05) :1959-1969
[8]   Current saturation mechanisms in carbon nanotube field emitters [J].
Dean, KA ;
Chalamala, BR .
APPLIED PHYSICS LETTERS, 2000, 76 (03) :375-377
[9]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[10]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517