Continuity in quasi-homogeneous Sobolev spaces for pseudo-differential operators with Besov symbols

被引:0
作者
Garello, Gianluca [1 ]
Morando, Alessandro [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Brescia, Fac Ingn, Dept Math, I-25133 Brescia, Italy
来源
MODERN TRENDS IN PSEUDO-DIFFERENTIAL OPERATORS | 2007年 / 172卷
关键词
pseudo-differential operators; Besov spaces; Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a result of continuity for pseudo-differential operators With non-regular symbols on spaces of quasi-homogeneous type is given. More precisely, the symbols a(x, xi) take their values in a quasi-homogeneous Besov space with respect to the x variable; moreover a finite number of derivatives With respect to the second variable satisfies, in Besov norm, decay estimates of quasi-homogeneous type.
引用
收藏
页码:161 / +
页数:2
相关论文
共 15 条
[1]  
[Anonymous], 1970, SINGUALR INTEGRALS D
[2]  
Coifman R.R., 1978, ASTERISQUE, V57
[3]   LP BOUNDS FOR PSEUDODIFFERENTIAL OPERATORS [J].
FEFFERMAN, C .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :413-417
[4]  
Garello G, 2005, OPER THEOR, V160, P195
[5]  
Garello G, 2004, OPER THEORY ADV APPL, V155, P91
[6]  
Garello G, 2005, BOLL UNIONE MAT ITAL, V8B, P461
[7]   LP-bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations [J].
Garello, G ;
Morando, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (04) :501-517
[8]  
Lascar R., 1977, ANN I FOURIER, V27, P79
[9]  
LIZORKIN PI, 1963, DOKL AKAD NAUK SSSR+, V152, P808