The interplay of critical regularity of nonlinearities in a weakly coupled system of semi-linear damped wave equations

被引:8
作者
Tuan Anh Dao [1 ,2 ]
Reissig, Michael [3 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet Rd, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi, Vietnam
[3] TU Bergakad Freiberg, Fac Math & Comp Sci, Pruferstr 9, D-09596 Freiberg, Germany
关键词
Damped wave equations; Weakly coupled system; Modulus of continuity; Global existence; Blow-up; CRITICAL EXPONENT;
D O I
10.1016/j.jde.2021.06.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We would like to study a weakly coupled system of semi-linear classical damped wave equations with moduli of continuity in nonlinearities whose powers belong to the critical curve in the p - q plane. The main goal of this paper is to find out sharp conditions of these moduli of continuity which classify between global (in time) existence of small data solutions and finite time blow-up of (even) small data solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 10 条
[1]   Critical regularity of nonlinearities in semilinear classical damped wave equations [J].
Ebert, M. R. ;
Girardi, G. ;
Reissig, M. .
MATHEMATISCHE ANNALEN, 2020, 378 (3-4) :1311-1326
[2]  
Ebert M R., 2018, Methods for partial differential equations
[3]  
Friedman A., 1976, Partial Differential Equations
[4]  
Matsumura A., 1976, Publ. RIMS, Kyoto Univ., V12, P169
[5]  
Narazaki T., 2009, DISCRETE CONT DYN-A, V2009, P592
[6]   Critical exponent for the Cauchy problem to the weakly coupled damped wave system [J].
Nishihara, Kenji ;
Wakasugi, Yuta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 108 :249-259
[7]   Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping [J].
Sun, Fuqin ;
Wang, Mingxin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) :2889-2910
[8]   Global existence and nonexistence of solutions for a system of nonlinear damped wave equations [J].
Takeda, Hiroshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :631-650
[9]   Critical exponent for a nonlinear wave equation with damping [J].
Todorova, G ;
Yordanov, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (02) :464-489
[10]   A blow-up result for a nonlinear wave equation with damping: The critical case [J].
Zhang, QS .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (02) :109-114