Some mean convergence theorems for weighted sums of Banach space valued random elements

被引:2
作者
Chen, Pingyan [1 ]
Cabrera, Manuel Ordonez [2 ]
Rosalsky, Andrew [3 ]
Volodin, Andrei [4 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou, Peoples R China
[2] Univ Seville, Dept Math Anal, Seville, Spain
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[4] Univ Regina, Dept Math & Stat, Regina, SK, Canada
关键词
Mean convergence; Banach space valued random element; martingale difference sequence; Rademacher type p Banach space; martingale type p Banach space; LARGE NUMBERS; STRONG LAW; WEAK LAWS; INTEGRABILITY;
D O I
10.1080/17442508.2021.1960348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this correspondence, we investigate mean convergence of order p for the weighted sums of Banach space valued random elements under a suitable (compactly) uniformly integrable condition with or without a geometric condition placed on the Banach space.
引用
收藏
页码:559 / 577
页数:19
相关论文
共 27 条
[1]   A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces [J].
Adler, A ;
Rosalsky, A ;
Volodin, AI .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (02) :167-174
[2]  
[Anonymous], 1961, Pacific J. Math.
[3]  
[Anonymous], 1978, Lecture Notes in Math
[4]  
AZLAROV TA, 1981, THEOR PROBAB APPL+, V26, P573
[5]   Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability [J].
Cabrera, MO ;
Volodin, AI .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) :644-658
[6]   On conditional compactly uniform pth-order integrability of random elements in Banach spaces [J].
Cabrera, MO ;
Volodin, AI .
STATISTICS & PROBABILITY LETTERS, 2001, 55 (03) :301-309
[7]  
Chow Y. S., 1997, PROBABILITY THEORY I
[8]   A strong law for weighted sums of IID random variables [J].
Cuzick, J .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (03) :625-641
[9]  
DEACOSTA A, 1981, ANN PROBAB, V9, P157
[10]  
Gan, 2002, WUHAN UNIV J NAT SCI, V7, P14