Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels

被引:36
作者
Blubaugh, Carmen K. [1 ,3 ]
Widick, Ivy V. [2 ]
Kaplan, Ian [1 ]
机构
[1] Purdue Univ, Dept Entomol, 901W State St, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Forestry & Nat Resources, 715 W State St, W Lafayette, IN 47907 USA
[3] Washington State Univ, Dept Entomol, POB 646382, Pullman, WA 99164 USA
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
Intraguild predation; Non-consumptive effects; Refuge; Seed predation; Coleoptera: Carabidae; Peromyscus spp; CARABID BEETLES COLEOPTERA; INTRAGUILD PREDATION; ACTIVITY-DENSITY; HARPALUS-RUFIPES; SEED PREDATION; COVER CROPS; TRADE-OFFS; PATCH USE; PREY; STRENGTH;
D O I
10.1007/s00442-017-3909-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Non-consumptive effects (NCEs) of predators are ubiquitous in food webs with well-detailed impacts on trophic cascades over multiple levels. However, integrating NCEs with other predator-mediated interactions, like intraguild predation, as well as context-specific habitat factors that shape top-down pressure, remains a challenge. Focusing on two common seed predators, mice (Peromyscus spp.) and carabid beetles (Coleoptera: Carabidae), we quantify trophic and behavioral consequences of predation risk and availability of refuge vegetation on both intraguild predators (mice) and intraguild prey (beetles). In a 2-year field experiment, we manipulated refuge habitat (red clover), small mammal access, and moonlight, which small mammals use as an indirect cue of predation risk. We found that avoidance of predation risk by mice in simulated moonlight reduced carabid activity density in vegetation by up to 50% compared to exposed habitat, but had no cascading effects on seed predation. We linked patterns observed in the field with behavioral mechanisms by observing beetle foraging activity, and found that exposure to both indirect and direct vertebrate predator cues reduced movement by 50%, consistent with predator-mediated activity reductions observed in the field. However, predation risk increased carabid seed consumption by 43%. Thus, weak effects of predation risk on seed removal in the field may be explained by overcompensatory seed feeding by beetles. This work demonstrates that predators elicit responses that cascade over multiple trophic levels, triggering behavioral changes in species lower on the food chain. These behavior-mediated cascades are controlled by their spatiotemporal context and have important downstream impacts on predator-prey dynamics.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 71 条