Numerical computation of second-order vacuum perturbations of Kerr black holes

被引:47
作者
Ripley, Justin L. [1 ,2 ]
Loutrel, Nicholas [2 ]
Giorgi, Elena [3 ,4 ]
Pretorius, Frans [2 ,4 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Grav Initiat, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
METRIC PERTURBATIONS; GRAVITATIONAL-WAVES; SPIN; RADIATION; EVOLUTION;
D O I
10.1103/PhysRevD.103.104018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Motivated by the desire to understand the leading-order nonlinear gravitational wave interactions around arbitrarily rapidly rotating Kerr black holes, we describe a numerical code designed to compute secondorder vacuum perturbations on such spacetimes. A general discussion of the formalism we use is presented in [N. Loutrel et al., Phys. Rev. D 103, 104017 (2021)]; here we show how we numerically implement that formalism with a particular choice of coordinates and tetrad conditions and give example results for black holes with dimensionless spin parameters a = 0.7 and a = 0.998. We first solve the Teukolsky equation for the linearly perturbedWeyl scalar Psi((1))(4), followed by direct reconstruction of the spacetime metric from Psi((1))(4), and then solve for the dynamics of the second-order perturbed Weyl scalar Psi((1))(4). This code is a first step toward a more general purpose second-order code, and we outline how our basic approach could be further developed to address current questions of interest, including extending the analysis of ringdown in black hole mergers to before the linear regime, exploring gravitational wave "turbulence" around near-extremal Kerr black holes, and studying the physics of extreme mass ratio inspiral.
引用
收藏
页数:29
相关论文
共 75 条
[11]   Self-force and radiation reaction in general relativity [J].
Barack, Leor ;
Pound, Adam .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[12]   Gravitational self-force in extreme mass-ratio inspirals [J].
Barack, Leor .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (21)
[13]  
Baumgarte T. W., 2010, Numerical Relativity: Solving Einstein's Equations on the Computer
[14]  
Bender C. M., 2013, ADV MATH METHODS SCI, DOI DOI 10.1007/978-1-4757-3069-2#ABOUT
[15]   Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA [J].
Berti, E ;
Cardoso, V ;
Will, CM .
PHYSICAL REVIEW D, 2006, 73 (06)
[16]   Quasinormal modes of black holes and black branes [J].
Berti, Emanuele ;
Cardoso, Vitor ;
Starinets, Andrei O. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
[17]  
Boyd John P, 2001, Chebyshev and Fourier spectral methods
[18]   SOME PROPERTIES OF SPIN-WEIGHTED SPHEROIDAL HARMONICS [J].
BREUER, RA ;
RYAN, MP ;
WALLER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 358 (1692) :71-86
[19]   Accurate time-domain gravitational waveforms for extreme-mass-ratio binaries [J].
Burko, L. M. ;
Khanna, G. .
EPL, 2007, 78 (06)
[20]   Second order gauge invariant gravitational perturbations of a Kerr black hole [J].
Campanelli, M ;
Lousto, CO .
PHYSICAL REVIEW D, 1999, 59 (12)