Interiors of continuous images of self-similar sets with overlaps

被引:0
作者
Xi, Lifeng [1 ]
Jiang, Kan [1 ]
Zhu, Jiali [1 ]
Pei, Qiyang [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2019年 / 95卷 / 3-4期
基金
中国国家自然科学基金;
关键词
fractal; self-similar set; overlap; arithmetic representation; interior; HAUSDORFF DIMENSION; SIMILAR FRACTALS; REAL NUMBERS; EXPANSIONS; ENTROPY;
D O I
10.5486/PMD.2019.8522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the attractor of the following iterated function system {S-1 (x) = lambda(x), S-2(x) = lambda(x) + c - lambda, S-3(x) = lambda(x) + 1 - lambda}, where S-1 (I) boolean AND S-2(I) not equal empty set (S-1(I) boolean OR S-2(I)) boolean AND S-3(I) = empty set, and I = [0,1] is the convex hull of K. Let d(1) = 1-c-lambda/lambda < 1/1-c-lambda = d(2). Suppose that f is a continuous function defined on an open set U subset of R-2. Denote the image f(U) (K, K) = {f (x,y) : (x,y) is an element of (K x K) boolean AND U}. If partial derivative(x)f, partial derivative(y)f are continuous on U, and there is a point (x(0), y(0)) is an element of (K x K) boolean AND U such that vertical bar partial derivative(y)f vertical bar((x0,y0))/partial derivative(x)f vertical bar ((x0,y0))vertical bar is an element of (d(1,)d(2)) or vertical bar partial derivative(x)f vertical bar((x0,y0))/partial derivative(y)f vertical bar((x0,y0))vertical bar is an element of (d(1,)d(2)), then f(U) (K, K) contains an interval. As a result, we let c = lambda = 1/3, and if f(x,y) = x(alpha)y(beta)), x (alpha beta not equal 0), x(alpha)+/- y(alpha) (alpha not equal 0) sin(x) cos(y), or x sin(xy), then f(U)(C, C) contains an interval, where C is the middle-third Cantor set.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 39 条
[1]  
Akiyama Shigeki, 2005, NIHONKAI MATH J, V16, P95
[2]  
[Anonymous], 2011, Integers
[3]   Cantor Set Arithmetic [J].
Athreya, Jayadev S. ;
Reznick, Bruce ;
Tyson, Jeremy T. .
AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (01) :4-17
[4]  
Baker S., 2014, INTEGERS, V14, pA15
[5]   SELF-SIMILAR SETS .7. A CHARACTERIZATION OF SELF-SIMILAR FRACTALS WITH POSITIVE HAUSDORFF MEASURE [J].
BANDT, C ;
GRAF, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (04) :995-1001
[6]  
Barrionuevo J, 1996, ACTA ARITH, V74, P311
[7]  
Dajani K, 2005, J EUR MATH SOC, V7, P51
[8]  
Dajani K., 2002, Ergodic Theory of Numbers
[9]  
Dajani K., 2016, ARXIV160309304
[10]  
Dajani K, 2007, J EUR MATH SOC, V9, P157