A Machine Learning Method for Identifying Critical Interactions Between Gene Pairs in Alzheimer's Disease Prediction

被引:17
|
作者
Chen, Hao [1 ]
He, Yong [1 ]
Ji, Jiadong [1 ]
Shi, Yufeng [1 ,2 ,3 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat, Jinan, Shandong, Peoples R China
[2] Shandong Univ, Inst Financial Studies, Jinan, Shandong, Peoples R China
[3] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2019年 / 10卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Alzheimer's disease; differential networks; machine learning; neurodegenerative disease; gene expression; DETECTING GROUP-DIFFERENCES; MITOCHONDRIAL DYSFUNCTION; COGNITIVE DECLINE; NETWORK ANALYSIS; ONSET; LOCI;
D O I
10.3389/fneur.2019.01162
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Alzheimer's disease (AD) is the most common type of dementia. Scientists have discovered that the causes of AD may include a combination of genetic, lifestyle, and environmental factors, but the exact cause has not yet been elucidated. Effective strategies to prevent and treat AD therefore remain elusive. The identified genetic causes of AD mainly focus on individual genes, but growing evidence has shown that complex diseases are usually affected by the interaction of genes in a network. Few studies have focused on the interactions and correlations between genes and how they are gradually destroyed or disappear during AD progression. A differential network analysis has been recognized as an essential tool for identifying the underlying pathogenic mechanisms and significant genes for prediction analysis. We therefore aim to conduct a differential network analysis to reveal potential networks involved in the neuropathogenesis of AD and identify genes for AD prediction. Methods: In this paper, we selected 365 samples from the Religious Orders Study and the Rush Memory and Aging Project, including 193 clinically and neuropathologically confirmed AD subjects and 172 no cognitive impairment (NCI) controls. Then, we selected 158 genes belonging to the AD pathway (hsa05010) of the Kyoto Encyclopedia of Genes and Genomes. We employed a machine learning method, namely, joint density-based non-parametric differential interaction network analysis and classification (JDINAC), in the analysis of gene expression data (RNA-seq data). We searched for the differential networks in the RNA-seq data with a pathological diagnosis of AD. Finally, an optimal prediction model was built through cross-validation, which showed good discrimination and calibration for AD prediction. Results: We used JDINAC to derive a gene co-expression network and to explore the relationship between the interaction of gene pairs and AD, and the top 10 differential gene pairs were identified. We then compared the prediction performance between JDINAC and individual genes based on prediction methods. JDINAC provides better accuracy of classification than the latest methods, such as random forest and penalized logistic regression. Conclusions: The interaction between gene pairs is related to AD and can provide more insight than the individual genes in AD prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Predictive Diagnosis of Alzheimer's Disease using Machine Learning
    Vuddanti, Sowjanya
    Yasmin, Neeha
    Dishasri, L.
    Somanath, Neela
    Prasanth, Y.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 928 - 934
  • [32] Detection of Alzheimer's disease by displacement field and machine learning
    Zhang, Yudong
    Wang, Shuihua
    PEERJ, 2015, 3
  • [33] Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning
    Li, Mingyang
    Liu, Hongyu
    Li, Yixuan
    Wang, Zejun
    Yuan, Yuan
    Dai, Honglin
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 456 - 462
  • [34] Classification of Alzheimer's Disease using Machine Learning Techniques
    Shahbaz, Muhammad
    Ali, Shahzad
    Guergachi, Aziz
    Niazi, Aneeta
    Umer, Amina
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2019, : 296 - 303
  • [35] Performances of Machine Learning Models for Diagnosis of Alzheimer’s Disease
    Arjaria S.K.
    Rathore A.S.
    Bisen D.
    Bhattacharyya S.
    Annals of Data Science, 2024, 11 (01) : 307 - 335
  • [36] Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease
    Mirabnahrazam, Ghazal
    Ma, Da
    Lee, Sieun
    Popuri, Karteek
    Lee, Hyunwoo
    Cao, Jiguo
    Wang, Lei
    Galvin, James E.
    Beg, Mirza Faisal
    JOURNAL OF ALZHEIMERS DISEASE, 2022, 87 (03) : 1345 - 1365
  • [37] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [38] TRANSFER LEARNING AND MACHINE LEARNING WITH MRI RADIOMICS FOR ALZHEIMER'S DISEASE DIAGNOSIS
    Hashem, Esraa Mamdouh
    Salem, Dina Ahmed
    2024 41ST NATIONAL RADIO SCIENCE CONFERENCE, NRSC 2024, 2024, : 243 - 251
  • [39] Alzheimer's disease prediction and classification using CT images through machine learning
    Enumula, Raveendra Reddy
    Rao, Rama Krishna
    BRATISLAVA MEDICAL JOURNAL-BRATISLAVSKE LEKARSKE LISTY, 2023, 124 (05): : 337 - 344
  • [40] Identifying progression subphenotypes of Alzheimer's disease from large-scale electronic health records with machine learning
    Zhou, Manqi
    Tang, Alice S.
    Zhang, Hao
    Xu, Zhenxing
    Ke, Alison M. C.
    Su, Chang
    Huang, Yu
    Mantyh, William G.
    Jaffee, Michael S.
    Rankin, Katherine P.
    Dekosky, Steven T.
    Zhou, Jiayu
    Guo, Yi
    Bian, Jiang
    Sirota, Marina
    Wang, Fei
    JOURNAL OF BIOMEDICAL INFORMATICS, 2025, 165