VERTEX COMPONENT ANALYSIS GPU-BASED IMPLEMENTATION FOR HYPERSPECTRAL UNMIXING

被引:0
作者
Rodriguez Alves, Jose M. [1 ]
Nascimento, Jose M. P. [1 ,2 ]
Plaza, Antonio [3 ]
Sanchez, Sergio [3 ]
Bioucas-Dias, Jose M. [1 ,4 ]
Silva, Vitor [5 ]
机构
[1] Inst Telecomunicacoes, Lisbon, Portugal
[2] Inst Super Engenharia Lisboa, Lisbon, Portugal
[3] Univ Extremadura, Hyperspectral Comp Lab, Caceres, Spain
[4] Univ Tecn Lisboa, Inst Super Tecnico, Lisbon, Portugal
[5] Univ Coimbra, DEEC, Inst Telecomun, Coimbra, Portugal
来源
2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS) | 2012年
关键词
Hyperspectral Unmixing; Endmember Extraction; Vertex Component Analysis; Graphics Processing Unit; Parallel Methods; ENDMEMBER EXTRACTION; ALGORITHM; IMAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis (VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.
引用
收藏
页数:4
相关论文
共 24 条
  • [1] [Anonymous], 2010, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, DOI DOI 10.1109/WHISPERS.2010.5594929
  • [2] [Anonymous], 1993, B AM ASTRON SOC
  • [3] [Anonymous], P SPIE IMAGING SPECT
  • [4] Bioucas-Dias J. M., 2010, P SPIE IMAGE SIGNAL, V7830, P1
  • [5] A Simplex Volume Maximization Framework for Hyperspectral Endmember Extraction
    Chan, Tsung-Han
    Ma, Wing-Kin
    Ambikapathi, ArulMurugan
    Chi, Chong-Yung
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4177 - 4193
  • [6] A new growing method for simplex-based endmember extraction algorithm
    Chang, Chein-I
    Wu, Chao-Cheng
    Liu, Wei-min
    Ouyang, Yen-Chieh
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (10): : 2804 - 2819
  • [7] End-member extraction for hyperspectral image analysis
    Du, Qian
    Raksuntorn, Nareenart
    Younan, Nicolas H.
    King, Roger L.
    [J]. APPLIED OPTICS, 2008, 47 (28) : F77 - F84
  • [8] Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
    Green, RO
    Eastwood, ML
    Sarture, CM
    Chrien, TG
    Aronsson, M
    Chippendale, BJ
    Faust, JA
    Pavri, BE
    Chovit, CJ
    Solis, MS
    Olah, MR
    Williams, O
    [J]. REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) : 227 - 248
  • [9] The sequential maximum angle convex cone (SMACC) endmember model
    Gruninger, J
    Ratkowski, AJ
    Hoke, ML
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 1 - 14
  • [10] Spectral unmixing
    Keshava, N
    Mustard, JF
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 44 - 57