Design and performance of asymmetric supported membranes for oxygen and hydrogen separation

被引:14
|
作者
Sadykov, Vladislav A. [1 ,2 ]
Eremeev, Nikita F. [1 ]
Fedorova, Yulia E. [1 ]
Krasnov, Alexey V. [1 ,2 ]
Bobrova, Ludmilla N. [1 ]
Bespalko, Yulia N. [1 ,2 ]
Lukashevich, Anton I. [1 ]
Skriabin, Pavel I. [1 ]
Smorygo, Oleg L. [3 ]
Veen, Andre C. Van [4 ]
机构
[1] Boreskov Inst Catalysis, Fed Res Ctr, Pr Akad Lavrentieva 5, Novosibirsk, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Powder Met Inst, Platonova Str 41, Minsk 220005, BELARUS
[4] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
关键词
Asymmetric supported membranes; Oxygen and hydrogen separation; Nanocomposites; Methane and ethanol reforming; Process parameters; PROTON CONDUCTING MEMBRANES; HIGH-PURITY HYDROGEN; OXIDE FUEL-CELLS; PARTIAL OXIDATION; NANOCOMPOSITE MATERIALS; TRANSPORT-PROPERTIES; NICKELATE-COBALTITE; LANTHANUM TUNGSTATE; PERMEABLE MEMBRANE; CATALYTIC MEMBRANE;
D O I
10.1016/j.ijhydene.2020.01.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Producing syngas and hydrogen from biofuels is a promising technology in the modern energy. In this work results of authors' research aimed at design of supported membranes for oxygen and hydrogen separation are reviewed. Nanocomposites were deposited as thin layers on Ni-Al foam substrates. Oxygen separation membranes were tested in CH4 selective oxidation/oxi-dry reforming. The hydrogen separation membranes were tested in C2H5OH steam reforming. High oxygen/hydrogen fluxes were demonstrated. For oxygen separation membranes syngas yield and methane conversion increase with
引用
收藏
页码:20222 / 20239
页数:18
相关论文
共 50 条
  • [21] Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes
    Xiao, Youchang
    Chng, Mei Lin
    Chung, Tai-Shung
    Toriida, Masahiro
    Tamai, Shouji
    Chen, Hongmin
    Jean, Y. C. Jerry
    CARBON, 2010, 48 (02) : 408 - 416
  • [22] Performance studies of mixed matrix membranes for gas separation: A review
    Aroon, M. A.
    Ismail, A. F.
    Matsuura, T.
    Montazer-Rahmati, M. M.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2010, 75 (03) : 229 - 242
  • [23] Reducing anisotropic effects on oxygen separation performance of K2NiF4-type membranes by adjusting grain size
    Li, Jiaqi
    Lei, Song
    Deng, Bixin
    Xue, Jian
    Wang, Yanjie
    Wang, Haihui
    JOURNAL OF MEMBRANE SCIENCE, 2021, 618
  • [24] Current status of ceramic-based membranes for oxygen separation from air
    Hashim, Salwa Meredith
    Mohamed, Abdul Rahman
    Bhatia, Subhash
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2010, 160 (1-2) : 88 - 100
  • [25] Multiscale Design of Graphyne-Based Materials for High-Performance Separation Membranes
    Yeo, Jingjie
    Jung, Gang Seob
    Martin-Martinez, Francisco J.
    Beem, Jennifer
    Qin, Zhao
    Buehler, Markus J.
    ADVANCED MATERIALS, 2019, 31 (42)
  • [26] Performance study of asymmetric oxygen transport membranes with vertically channelled pores by phase inversion tape casting
    Liu, Yang
    Wilkner, Kai
    Unije, Unoaku Victoria
    Baumann, Stefan
    Muecke, Robert
    Schulze-Kueppers, Falk
    Guillon, Olivier
    OPEN CERAMICS, 2022, 9
  • [27] Microstructural and Interfacial Designs of Oxygen-Permeable Membranes for Oxygen Separation and Reaction-Separation Coupling
    Zhu, Xuefeng
    Yang, Weishen
    ADVANCED MATERIALS, 2019, 31 (50)
  • [28] High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation
    Kumbharkar, S. C.
    Liu, Y.
    Li, K.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 375 (1-2) : 231 - 240
  • [29] Transition metal oxide-based membranes for oxygen separation
    Hou, Jianfeng
    Shen, Zhangfeng
    Tan, Xihan
    Ali, Tarik E.
    Assiri, Mohammed A.
    Asif, Saira
    Han, Ning
    CHEMOSPHERE, 2022, 308
  • [30] Development of mixed-conducting ceramic membranes for hydrogen separation
    Guan, J
    Dorris, SE
    Balachandran, U
    Liu, ML
    ELECTROCHEMISTRY OF GLASS AND CERAMICS, 1999, 92 : 265 - 276